Du D. Design and analysis of approximation algorithms (New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDu D. Design and analysis of approximation algorithms / Ding-Zhu Du, Ker-I Ko, Xiaodong Hu. - New York: Springer, 2012. - xi, 440 p. - (Springer optimization and its applications; vol.62). - Bibliogr.: p.407-424. - Ind.: p.425-440. - ISBN 978-1-4614-1700-2; ISSN 1931-6828
 

Место хранения: 01 | ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... v
1  Introduction ................................................. 1
   1.1  Open Sesame ............................................. 1
   1.2  Design Techniques for Approximation Algorithms .......... 8
   1.3  Heuristics Versus Approximation ........................ 13
   1.4  Notions in Computational Complexity .................... 14
   1.5  NP-Complete Problems ................................... 17
   1.6  Performance Ratios ..................................... 23
   Exercises ................................................... 28
   Historical Notes ............................................ 33
2  Greedy Strategy ............................................. 35
   2.1  Independent Systems .................................... 35
   2.2  Matroids ............................................... 40
   2.3  Quadrilateral Condition on Cost Functions .............. 43
   2.4  Submodular Potential Functions ......................... 49
   2.5  Applications ........................................... 59
   2.6  Nonsubmodular Potential Functions ...................... 66
   Exercises ................................................... 75
   Historical Notes ............................................ 80
3  Restriction ................................................. 81
   3.1  Steiner Trees and Spanning Trees ....................... 82
   3.2  k-Restricted Steiner Trees ............................. 86
   3.3  Greedy k-Restricted Steiner Trees ...................... 89
   3.4  The Power of Minimum Spanning Trees ................... 102
   3.5  Phylogenetic Tree Alignment ........................... 110
   Exercises .................................................. 115
   Historical Notes ........................................... 121
4  Partition .................................................. 123
   4.1  Partition and Shifting ................................ 123
   4.2  Boundary Area ......................................... 129
   4.3  Multilayer Partition .................................. 136
   4.4  Double Partition ...................................... 142
        4.4.1  A Weighted Covering Problem .................... 142
        4.4.2  A 2-Approximation for WDS-UDG on a Small Cell .. 146
        4.4.3  A 6-Approximation for WDS-UDG on a Large Cell .. 151
        4.4.4  A (6 + ε)-Approximation for WDS-UDG ............ 155
   4.5  Tree Partition ........................................ 157
   Exercises .................................................. 160
   Historical Notes ........................................... 164
5  Guillotine Cut ............................................. 165
   5.1  Rectangular Partition ................................. 165
   5.2  1-Guillotine Cut ...................................... 170
   5.3  m-Guillotine Cut ...................................... 175
   5.4  Portals ............................................... 184
   5.5  Quadtree Partition and Patching ....................... 191
   5.6  Two-Stage Portals ..................................... 201
   Exercises .................................................. 205
   Historical Notes ........................................... 208
6  Relaxation ................................................. 211
   6.1  Directed Hamiltonian Cycles and Superstrings .......... 211
   6.2  Two-Stage Greedy Approximations ....................... 219
   6.3  Conected Dominating Sets in Unit Disk Graphs .......... 223
   6.4  Strongly Connected Dominating Sets in Digraphs ........ 228
   6.5  Multicast Routing in Optical Networks ................. 235
   6.6  A Remark on Relaxation Versus Restriction ............. 238
   Exercises .................................................. 240
   Historical Notes ........................................... 243
7  Linear Programming ......................................... 245
   7.1  Basic Properties of Linear Programming ................ 245
   7.2  Simplex Method ........................................ 252
   7.3  Combinatorial Rounding ................................ 259
   7.4  Pipage Rounding ....................................... 267
   7.5  Iterated Rounding ..................................... 272
   7.6  Random Rounding ....................................... 280
   Exercises .................................................. 289
   Historical Notes ........................................... 295
8  Primal-Dual Schema and Local Ratio ......................... 297
   8.1  Duality Theory and Primal-Dual Schema ................. 297
   8.2  General Cover ......................................... 303
   8.3  Network Design ........................................ 310
   8.4  Local Ratio ........................................... 315
   8.5  More on Equivalence ................................... 325
   Exercises .................................................. 332
   Historical Notes ........................................... 336
9  Semidefinite Programming ................................... 339
   9.1  Spectrahedra .......................................... 339
   9.2  Semidefinite Programming .............................. 341
   9.3  Hyperplane Rounding ................................... 345
   9.4  Rotation of Vectors ................................... 352
   9.5  Multivariate Normal Rounding .......................... 358
   Exercises .................................................. 363
   Historical Notes ........................................... 369
10 Inapproximability .......................................... 371
   10.1 Many-One Reductions with Gap .......................... 371
   10.2 Gap Amplification and Preservation .................... 376
   10.3 APX-Completeness ...................................... 380
   10.4 PCP Theorem ........................................... 388
   10.5 (ρ ln n)-Inapproximability ............................ 391
   10.6 nc-Inapproximability .................................. 396
   Exercises .................................................. 399
   Historical Notes ........................................... 405
Bibliography .................................................. 407
Index ......................................................... 425


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:44 2019. Размер: 10,148 bytes.
Посещение N 1401 c 05.11.2013