Preface ................................................... XV
List of Contributors .................................... XVII
1 LCOS Spatial Light Modulators: Trends and Applications ..... 1
Grigory Lazarev, Andreas Hermerschmidt, Sven Krüger, and
Stefan Osten
1.1 Introduction ............................................... 1
1.2 LCOS-Based SLMs ............................................ 2
1.2.1 LCOS Technology ..................................... 2
1.2.1.1 Manufacturing and Assembly Technologies .... 2
1.2.1.2 Signal Flow ................................ 4
1.2.1.3 Drive Schemes and Latency .................. 6
1.2.2 Operation Modes ..................................... 8
1.2.2.1 Amplitude Modulation ....................... 9
1.2.2.2 Phase Modulation ........................... 9
1.2.2.3 Polarization Modulation ................... 10
1.2.2.4 Complex-Valued Modulation ................. 10
1.2.3 Performance Evaluation ............................. 11
1.3 Some Applications of Spatial Light Modulators in Optical
Imaging and Metrology ..................................... 12
1.4 Conclusion ................................................ 23
References ................................................ 23
2 Three-Dimensional Display and Imaging: Status and
Prospects ................................................. 31
Byoungho Lee and Youngmin Kim
2.1 Introduction .............................................. 31
2.2 Present Status of 3D Displays ............................. 32
2.2.1 Hardware Systems ................................... 32
2.2.1.1 Stereoscopic Displays ..................... 32
2.2.1.2 Autostereoscopic Displays ................. 36
2.2.1.3 Volumetric Displays ....................... 40
2.2.1.4 Holographic Displays ...................... 42
2.2.1.5 Recent 3D Display Techniques .............. 44
2.2.2 Software Systems ................................... 44
2.3 The Human Visual System ................................... 47
2.4 Conclusion ................................................ 48
Acknowledgments ........................................... 50
References ................................................ 50
3 Holographic Television: Status and Future ................. 57
Małgorzata Kujawińska and Tomasz Kozacki
3.1 Introduction .............................................. 57
3.2 The Concept of Holographic Television System .............. 60
3.3 Holographic Display Configuration ......................... 63
3.3.1 Planar and Circular Configurations ................. 63
3.3.2 Real Image Wigner Distribution Analysis of the
Holographic Displays in Planar and Circular
Configurations ..................................... 65
3.3.2.1 Planar Configuration ...................... 66
3.3.2.2 Circular Configuration .................... 67
3.3.3 Visual Perception Analysis of Holographic
Displays in Planar and Circular Configurations ..... 68
3.3.4 Comparison of the Display Configurations for
Commercially Available SLMs ........................ 70
3.4 Capture Systems ........................................... 71
3.4.1 The Theory of Wide-Angle Holographic Capture ....... 71
3.4.2 The Capture System with Multiple Cameras ........... 72
3.4.3 The Capture System with a Single Camera and
Rotated Static Object .............................. 75
3.5 Display System ............................................ 77
3.5.1 1LCoS SLM in Holographic Display ................... 77
3.5.2 Experimental Configurations of Holographic
Displays ........................................... 79
3.5.2.1 Display Basing on Spherical Illumination .. 80
3.5.2.2 Display Configuration Matching the
Capture Geometry .......................... 80
3.5.2.3 Display Based on Tilted Plane Wave
Illumination .............................. 81
3.6 Linking Capture and Display Systems ....................... 85
3.6.1 Mismatch in Sampling and Wavelength ................ 86
3.6.2 Processing of Holograms to the Display Geometry .... 86
3.7 Optical Reconstructions of Real Scenes in Multi-SLM
Display System ............................................ 88
3.8 Conclusions and Future Perspectives ....................... 91
References ................................................ 92
4 Display Holography-Status and Future ...................... 95
Ventseslav Sainov and Elena Stoykova
4.1 Introduction .............................................. 95
4.2 Types of Holograms ........................................ 97
4.3 Basic Parameters and Techniques of Holographic Recording .. 99
4.4 Light-Sensitive Materials for Holographic Recording in
Display Holography ....................................... 102
4.4.1 Photoresists ...................................... 103
4.4.2 Dichromate Gelatin ................................ 103
4.4.3 Photopolymers ..................................... 104
4.4.4 Silver Halide Emulsions ........................... 105
4.5 Diffraction Efficiency of Discrete Carrier Holograms ..... 108
4.6 Multicolor Holographic Recording ......................... 111
4.7 Digital Holographic Display: Holoprinters ................ 115
4.8 Conclusion ............................................... 117
References ............................................... 117
5 Incoherent Computer-Generated Holography for 3D Color
Imaging and Display ...................................... 121
Toyohiko Yatagai and Yusuke Sando
5.1 Introduction ............................................. 121
5.2 Three-Dimensional Imaging and Display with CGHs .......... 122
5.3 Theory of this Method .................................... 123
5.3.1 Relation between Object Waves and 3D Fourier
Spectrum .......................................... 123
5.3.2 Extraction Method for Paraboloid of Revolution .... 124
5.3.3 Extension to Full-Color Reconstruction ............ 126
5.4 Imaging System and Resolution ............................ 127
5.4.1 Size of Object .................................... 127
5.4.2 Spatial Resolution ................................ 128
5.4.3 Magnification along the z-direction ............... 128
5.5 Experiments .............................................. 129
5.5.1 Computer Simulation and Some Parameters ........... 129
5.5.2 Optical Reconstruction ............................ 130
5.6 Biological Specimen ...................................... 131
5.7 Conclusion ............................................... 133
Acknowledgments .......................................... 133
References ............................................... 133
6 Approaches to Overcome the Resolution Problem in
Incoherent Digital Holography ............................ 135
Joseph Rosen, Natan T. Shaked, Barak Katz, and Gary
Brooker
6.1 Introduction ........................................ 135
6.2 Digital Incoherent Protected Correlation Holograms .. 136
6.3 Off-Axis Optical Scanning Holography ................ 142
6.4 Synthetic Aperture with Fresnel Elements ............ 147
6.5 Summary ............................................. 159
Acknowledgments .......................................... 160
References ............................................... 160
7 Managing Digital Holograms and the Numerical
Reconstruction Process for Focus Flexibility ............. 163
Melania Paturzo and Pietro Ferraro
7.1 Introduction ........................................ 163
7.2 Fresnel Holograms: Linear Deformation ............... 165
7.3 Fresnel Holograms: Quadratic and Polynomial
Deformation ......................................... 168
7.4 Fourier Holograms: Quadratic Deformation ............ 170
7.5 Simultaneous Multiplane Imaging in DH ............... 172
7.6 Summary ............................................. 175
References ............................................... 176
8 Three-Dimensional Particle Control by Holographic
Optical Tweezers ......................................... 179
Mike Woerdemann, Christina Alpmann, and Cornelia Denz
8.1 Introduction ............................................. 179
8.2 Controlling Matter at the Smallest Scales ................ 180
8.2.1 Applications of Optical Tweezers .................. 181
8.2.2 Dynamic Optical Tweezers .......................... 181
8.3 Holographic Optical Tweezers ............................. 183
8.3.1 Diffractive Optical Elements ...................... 183
8.3.2 Iterative Algorithms .............................. 184
8.3.3 Experimental Implementation ....................... 185
8.4 Applications of Holographic Optical Tweezers ............. 187
8.4.1 Colloidal Sciences ................................ 187
8.4.2 Full Three-Dimensional Control over Rod-Shaped
Bacteria .......................................... 189
8.4.3 Managing Hierarchical Supramolecular
Organization ...................................... 190
8.5 Tailored Optical Landscapes .............................. 192
8.5.1 Nondiffracting Beams .............................. 193
8.5.1.1 Mathieu Beams ............................ 196
8.5.2 Self-Similar Beams ................................ 197
8.5.2.1 Ince-Gaussian Beams ...................... 198
8.6 Summary .................................................. 200
References ............................................... 200
9 The Role of Intellectual Property Protection in Creating
Business in Optical Metrology .............................. 207
Nadya Reingand
9.1 Introduction ............................................. 207
9.2 Types of Intellectual Property Relevant to Optical
Metrology ................................................ 208
9.3 What Kind of Business Does Not Need IP Protection? ....... 210
9.4 Does IP Protect Your Product from Counterfeiting? ........ 211
9.5 Where to Protect Your Business? .......................... 212
9.6 International Patent Organizations ....................... 212
9.7 Three Things Need to Be Done Before Creating Business .... 214
9.7.1 Prior Art Search .................................. 214
9.7.2 Patent Valuation .................................. 216
9.8 Ownership Clarification .................................. 217
9.9 Patent Filing ............................................ 219
9.10 Commercialization ........................................ 220
9.10.1 Licensing to Existing Companies ................... 220
9.10.2 Start-Ups ......................................... 221
9.11 Conclusions .............................................. 222
References ............................................... 223
10 On the Difference between 3D Imaging and 3D Metrology
for Computed Tomography .................................. 225
Daniel Wei&szling; and Michael Totzeck
10.1 Introduction ............................................. 225
10.2 General Considerations of 3D Imaging, Inspection, and
Metrology ................................................ 226
10.2.1 3D Imaging ........................................ 226
10.2.2 3D Inspection ..................................... 227
10.2.3 3D Metrology ...................................... 229
10.3 Industrial 3D Metrology Based on X-ray Computed
Tomography ............................................... 229
10.3.1 X-Ray Cone-Beam Computed Tomography ............... 230
10.3.1.1 Two-Dimensional Image Formation .......... 230
10.3.1.2 Imaging Geometries and 3D
Reconstruction ........................... 231
10.3.2 X-Ray CT-Based Dimensional Metrology .............. 232
10.3.2.1 Why CT Metrology? ........................ 232
10.3.2.2 Surface Extraction from 3D Absorption
Data ..................................... 232
10.3.3 Device Imperfections and Artifacts ................ 233
10.3.3.1 Geometrical Alignment of the Components .. 233
10.3.3.2 Beam Hardening ........................... 233
10.3.4 Standards for X-Ray CT-Based Dimensional
Metrology ......................................... 235
10.3.4.1 Length Measurement Error and Scanning
Errors of Form and Size .................. 235
10.3.4.2 Dependence on Material and Geometry ...... 237
10.4 Conclusions .............................................. 237
References ............................................... 238
11 Coherence Holography: Principle and Applications ......... 239
Mitsuo Takeda, Wei Wang, and Dinesh N. Naik
11.1 Introduction ............................................. 239
11.2 Principle of Coherence Holography ........................ 240
11.2.1 Reciprocity in Spatial Coherence and Hologram
Recording ......................................... 240
11.2.2 Similarity between the Diffraction Integral and
van Cittert-Zernike Theorem ....................... 241
11.3 Gabor-Type Coherence Holography Using a Fizeau
Interferometer ........................................... 241
11.4 Leith-Type Coherence Holography Using a Sagnac
Interferometer ...................................... 243
11.5 Phase-Shift Coherence Holography .................... 246
11.6 Real-Time Coherence Holography ...................... 247
11.7 Application of Coherence Holography: Dispersion-
Free Depth Sensing with a Spatial Coherence Comb .... 248
11.8 Conclusion .......................................... 252
Acknowledgments .......................................... 252
References ............................................... 252
12 Quantitative Optical Microscopy at the Nanoscale: New
Developments and Comparisons ............................. 255
Bernd Bodermann, Egbert Buhr, Zhi Li, and Harald Bosse
12.1 Introduction ............................................. 255
12.2 Quantitative Optical Microscopy .......................... 257
12.2.1 M etiological Traceability ........................ 257
12.2.2 Measurands and Measurement Methods ................ 260
12.2.3 Image Signal Modeling ............................. 261
12.2.4 Experimental Aspects .............................. 263
12.2.5 Measurement Uncertainty ........................... 265
12.3 Comparison Measurements .................................. 268
12.4 Recent Development Trends: DUV Microscopy ................ 271
12.4.1 Light Source and Coherence Reduction .............. 274
12.4.2 Illumination System ............................... 275
12.4.3 Imaging Configuration ............................. 276
12.5 Points to Address for the Further Development of
Quantitative Optical Microscopy .......................... 278
References ............................................... 279
13 Model-Based Optical Metrology ............................ 283
Xavier Colonna de Lega
13.1 Introduction ............................................. 283
13.2 Optical Metrology ........................................ 283
13.3 Modeling Light-Sample Interaction ........................ 284
13.3.1 From Light Detection to Quantitative Estimate of
a Measurand ....................................... 284
13.3.2 Two Types of Light-Sample Interaction Models ...... 285
13.4 Forward Models in Optical Metrology ...................... 287
13.5 Inverse Models in Optical Metrology ...................... 290
13.5.1 Wave Front Metrology .............................. 290
13.5.2 Thin-Film Structures Metrology .................... 291
13.5.3 Unresolved Structures Metrology ................... 295
13.6 Confidence in Inverse Model Metrology .................... 298
13.6.1 Modeling Pitfalls ................................. 299
13.6.2 Sensitivity Analysis .............................. 300
13.6.3 Validation of the Overall Tool Capability ......... 300
13.7 Conclusion and Perspectives .............................. 301
References ............................................... 302
14 Advanced MEMS Inspection by Direct and Indirect
Solution Strategies ...................................... 305
Ryszard J. Pryputniewicz
14.1 Introduction ............................................. 305
14.2 ACES Methodology ......................................... 307
14.2.1 Computational Solution ............................ 308
14.2.2 Experimental Solution Based on Optoelectronic
Methodology ....................................... 309
14.2.2.1 The OELIM System ......................... 312
14.3 MEMS Samples Used ........................................ 314
14.4 Representative Results ................................... 317
14.4.1 Deformations of a Microgyroscope .................. 317
14.4.2 Functional Operation of a Microaccelerometer ...... 319
14.4.3 Thermomechanical Deformations of a Cantilever
Microcontact ...................................... 319
14.5 Conclusions and Recommendations .......................... 322
Acknowledgments .......................................... 323
References ............................................... 323
15 Different Ways to Overcome the Resolution Problem in
Optical Micro and Nano Metrology ......................... 327
Wolfgang Osten
15.1 Introduction ............................................. 327
15.2 Physical and Technical Limitations in Optical
Metrology ................................................ 328
15.2.1 Optical Metrology as an Identification Problem .... 329
15.2.2 Diffraction-Limited Lateral Resolution in
Optical Imaging ................................... 331
15.2.3 Diffraction-Limited Depth of Focus in Optical
Imaging ........................................... 333
15.2.4 Space-Bandwidth Product of Optical Imaging
Systems ........................................... 333
15.3 Methods to Overcome the Resolution Problem in Optical
Imaging and Metrology .................................... 334
15.3.1 New Strategies for the Solution of
Identification Problems ........................... 335
15.3.1.1 Active Measurement Strategies ............ 335
15.3.1.2 Model-Based Reconstruction Strategies .... 336
15.3.1.3 Sensor Fusion Strategies ................. 337
15.3.2 Different Approaches for Resolution Enhancement
of Imaging Systems ................................ 338
15.3.2.1 Conventional Approaches to Achieve the
Resolution Limit ......................... 340
15.3.2.2 Unconventional Approaches to Break the
Resolution Limit ......................... 340
15.4 Exemplary Studies on the Performance of Various
Inspection Strategies .................................... 343
15.4.1 Model-Based Reconstruction of Sub-λ Features ...... 343
15.4.1.1 The Application of Scatterometry for
CD-Metrology ............................. 343
15.4.1.2 Model-Based and Depth-Sensitive Fourier
Scatterometry for the Characterization
of Periodic Sub-100 nm Structures ........ 348
15.4.2 High-Resolution Measurement of Extended
Technical Surfaces with Multiscale Sensor Fusion .. 355
15.5 Conclusion ............................................... 360
Acknowledgments .......................................... 362
References ............................................... 362
16 Interferometry in Harsh Environments ..................... 369
Armando Albertazzi G. Jr
16.1 Introduction ............................................. 369
16.2 Harsh Environments ....................................... 369
16.3 Harsh Agents ............................................. 370
16.3.1 Temperature ....................................... 370
16.3.2 Humidity .......................................... 372
16.3.3 Atmosphere and Pressure ........................... 373
16.3.4 Shock and Vibration ............................... 374
16.3.5 Radiation and Background Illumination ............. 374
16.4 Requirements for Portable Interferometers ................ 375
16.4.1 Robustness ........................................ 375
16.4.2 Flexibility ....................................... 376
16.4.3 Compactness ....................................... 376
16.4.4 Stability ......................................... 376
16.4.5 Friendliness ...................................... 376
16.4.6 Cooperativeness ................................... 377
16.5 Current Solutions ........................................ 377
16.5.1 Isolation ......................................... 377
16.5.1.1 Atmosphere Isolation ..................... 377
16.5.1.2 Temperature Isolation .................... 378
16.5.1.3 Radiation Isolation ...................... 378
16.5.1.4 Vibration Isolation ...................... 378
16.5.2 Robustness ........................................ 379
16.6 Case Studies ............................................. 381
16.6.1 Dantec ESPI Strain Sensor (Q-100) ................. 382
16.6.2 Monolitic GI/DSPI/DHI Sensor ...................... 382
16.6.3 ESPI System for Residual Stresses Measurement ..... 384
16.6.4 Pixelated Phase-Mask Dynamic Interferometer ....... 385
16.6.5 Digital Holographic Microscope .................... 386
16.6.6 Shearography ...................................... 387
16.6.7 Fiber-Optic Sensors ............................... 388
16.7 Closing Remarks .......................................... 389
16.7.1 Summary ........................................... 389
16.7.2 A Quick Walk into the Future ...................... 390
References ............................................... 390
17 Advanced Methods for Optical Nondestructive Testing ...... 393
Ralf B. Bergmann and Philipp Huke
17.1 Introduction ............................................. 393
17.2 Principles of Optical Nondestructive Testing Techniques
(ONDTs) .................................................. 393
17.2.1 Material or Object Properties ..................... 394
17.2.2 Application of Thermal or Mechanical Loads for
NDT ............................................... 395
17.2.3 Selected Measurement Techniques Suitable for
Optical NDT ....................................... 396
17.2.4 Comparison of Properties of Selected NDT
Techniques ........................................ 397
17.3 Optical Methods for NDT .................................. 399
17.3.1 Thermography ...................................... 399
17.3.2 Fringe Reflection Technique (FRT) ................. 399
17.3.2.1 Principle of FRT ......................... 400
17.3.2.2 Experimental Results ..................... 401
17.3.3 Digital Speckle Shearography ...................... 402
17.3.3.1 Principle of Shearography ................ 402
17.3.3.2 Experimental Results ..................... 402
17.3.4 Laser Ultrasound .................................. 404
17.3.4.1 Principle of Operation ................... 404
17.3.4.2 Experimental Results ..................... 406
17.4 Conclusions and Perspectives ............................. 408
Acknowledgments .......................................... 409
References ............................................... 409
18 Upgrading Holographic Interferometry for Industrial
Application by Digital Holography ........................ 413
Zoltán Füzessy, Ferenc Gyímesi, and Venczel Borbély
18.1 Introduction ............................................. 413
18.2 Representative Applications .............................. 414
18.3 Contributions to Industrial Applications by Analog
Holography ............................................... 414
18.3.1 Portable Interferometer in the Days of Analog
Holographic Interferometry ........................ 414
18.3.2 Difference Holographic Interferometry (DHI)-
Technique for Comparison and Fringe Compensation .. 418
18.3.3 Straightforward Way of Managing Dense
Holographic Fringe Systems ........................ 423
18.3.3.1 Upper Limit of the Evaluating Camera-
Computer System .......................... 424
18.3.3.2 Measuring Range of Holographic
Interferometry ........................... 425
18.3.3.3 PUZZLE Read-Out Extension Technique
for Speckled Interferograms .............. 426
18.4 Contributions to Industrial Applications by Digital
Holography ............................................... 428
18.4.1 Scanning and Magnifying at Hologram Readout ....... 429
18.4.2 Digital Holography for Residual Stress
Measurement ....................................... 431
18.5 Conclusion and a Kind of Wish List ....................... 434
Acknowledgments .......................................... 434
References ............................................... 434
Color Plates .............................................. 439
Index ..................................................... 475
|