Morters P. Brownian motion (Cambridge; New York, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMörters P. Brownian motion / P.Mörters, Y.Peres. - Cambridge; New York: Cambridge University Press, 2010. - xii, 403 p.: ill. - (Cambridge series in statistical and probabilistic mathematics; 30). - Bibliogr.: p.386-399. - Ind.: p.400-403. - ISBN 978-0-521-76018-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ...................................................... viii
Frequently used notation ........................................ x
Motivation ...................................................... 1

1  Brownian motion as a random function ......................... 7
   1.1  Paul Levy's construction of Brownian motion ............. 7
   1.2  Continuity properties of Brownian motion ............... 14
   1.3  Nondifferentiability of Brownian motion ................ 18
   1.4  The Cameron-Martin theorem ............................. 24
   Exercises ................................................... 30
   Notes and comments .......................................... 33
2  Brownian motion as a strong Markov process .................. 36
   2.1  The Markov property and Blumenthal's 0-1 law ........... 36
   2.2  The strong Markov property and the reflection 
        principle .............................................. 40
   2.3  Markov processes derived from Brownian motion .......... 48
   2.4  The martingale property of Brownian motion ............. 53
   Exercises ................................................... 59
   Notes and comments .......................................... 63
3  Harmonic functions, transience and recurrence ............... 65
   3.1  Harmonic functions and the Dirichlet problem ........... 65
   3.2  Recurrence and transience of Brownian motion ........... 71
   3.3  Occupation measures and Green's functions .............. 76
   3.4  The harmonic measure ................................... 84
   Exercises ................................................... 91
   Notes and comments .......................................... 94
4  Hausdorff dimension: Techniques and applications ............ 96
   4.1  Minkowski and Hausdorff dimension ...................... 96
   4.2  The mass distribution principle ....................... 105
   4.3  The energy method ..................................... 108
   4.4  Frostman's lemma and capacity ......................... 111
   Exercises .................................................. 115
   Notes and comments ......................................... 116
5  Brownian motion and random walk ............................ 118
   5.1  The law of the iterated logarithm ..................... 118
   5.2  Points of increase for random walk and Brownian
        motion ................................................ 123
   5.3  Skorokhod embedding and Donsker's invariance 
        principle ............................................. 127
   5.4  The arcsine laws for random walk and Brownian motion .. 135
   5.5  Pitman's 2M - В theorem ............................... 140
   Exercises .................................................. 146
   Notes and comments ......................................... 149
6  Brownian local time ........................................ 153
   6.1  The local time at zero ................................ 153
   6.2  A random walk approach to the local time process ...... 165
   6.3  The Ray-Knight theorem ................................ 170
   6.4  Brownian local time as a Hausdorff measure ............ 178
   Exercises .................................................. 186
   Notes and comments ......................................... 187
7  Stochastic integrals and applications ...................... 190
   7.1  Stochastic integrals with respect to Brownian motion .. 190
   7.2  Conformal invariance and winding numbers .............. 201
   7.3  Tanaka's formula and Brownian local time .............. 209
   7.4  Feynman-Kac formulas and applications ................. 213
   Exercises .................................................. 220
   Notes and comments ......................................... 222
8  Potential theory of Brownian motion ........................ 224
   8.1  The Dirichlet problem revisited ....................... 224
   8.2  The equilibrium measure ............................... 227
   8.3  Polar sets and capacities ............................. 234
   8.4  Wiener's test of regularity ........................... 248
   Exercises .................................................. 251
   Notes and comments ......................................... 253
9  Intersections and self-intersections of Brownian paths ..... 255
   9.1  Intersection of paths: Existence and Hausdorff 
        dimension ............................................. 255
   9.2  Intersection equivalence of Brownian motion and 
        percolation limit sets ................................ 263
   9.3  Multiple points of Brownian paths ..................... 272
   9.4  Kaufman's dimension doubling theorem .................. 279
   Exercises .................................................. 285
   Notes and comments ......................................... 287
10 Exceptional sets for Brownian motion ....................... 290
   10.1 The fast times of Brownian motion ..................... 290
   10.2 Packing dimension and limsup fractals ................. 298
   10.3 Slow times of Brownian motion ......................... 307
   10.4 Cone points of planar Brownian motion ................. 312
   Exercises .................................................. 322
   Notes and comments ......................................... 324

Appendix A: Further developments
11 Stochastic Loewner evolution and planar Brownian motion .... 327
   by Oded Schramm and Wendelin Werner
   11.1 Some subsets of planar Brownian paths ................. 327
   11.2 Paths of stochastic Loewner evolution ................. 331
   11.3 Special properties of SLE(6) .......................... 339
   11.4 Exponents of stochastic Loewner evolution ............. 340
   Notes and comments ......................................... 344

Appendix B: Background and prerequisites ...................... 346
   12.1  Convergence of distributions ......................... 346
   12.2  Gaussian random variables ............................ 349
   12.3  Martingales in discrete time ......................... 351
   12.4  Trees and flows on trees ............................. 358
   Hints and solutions for selected exercises ................. 361
   Selected open problems ..................................... 383

Bibliography .................................................. 386

Index ......................................................... 400


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:42 2019. Размер: 10,225 bytes.
Посещение N 1292 c 29.10.2013