Kresin G. Maximum principles and sharp constants for solutions of elliptic and parabolic systems (Providence, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKresin G. Maximum principles and sharp constants for solutions of elliptic and parabolic systems / G.Kresin, V.Maz'ya. - Providence: American Mathematical Society, 2012. - vii, 317 p. - Bibliogr.: p.297-306. - Ind.: p.313-317. - ISBN 978-0-8218-8981-7
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction .................................................... 1

Part 1  Elliptic Equations and Systems .......................... 7

Chapter 1  Prerequisites on Operators Acting into Finite
Dimensional Spaces .............................................. 9
1.1  Introduction ............................................... 9
1.2  Linear bounded operators defined on spaces of continuous
     vector-valued functions and acting into fig.2m or fig.3m .......... 10
1.3  Linear bounded operators defined on Lebesgue spaces of
     vector-valued functions and acting into fig.2m or fig.3m .......... 17
1.4  Comments to Chapter 1 ..................................... 20

Chapter 2  Maximum Modulus Principle for Second Order 
Strongly Elliptic Systems ...................................... 21
2.1  Introduction .............................................. 21
2.2  Systems with constant coefficients without lower order
     terms ..................................................... 23
2.3  General second order strongly elliptic systems ............ 33
2.4  Comments to Chapter 2 ..................................... 52

Chapter 3  Sharp Constants in the Miranda-Agmon Inequalities
for Solutions of Certain Systems of Mathematical Physics ....... 55
3.1  Introduction .............................................. 55
3.2  Best constants in the Miranda-Agmon inequalities for
     solutions of strongly elliptic systems in a half-space .... 58
3.3  The Lame and Stokes systems in a half-space ............... 64
3.4  Planar deformed state ..................................... 69
3.5  The system of quasistatic viscoelasticity ................. 71
3.6  Comments to Chapter 3 ..................................... 75

Chapter 4  Sharp Pointwise Estimates for Solutions of
Elliptic Systems with Boundary Data from LP .................... 77
4.1  Introduction .............................................. 77
4.2  Best constants in pointwise estimates for solutions of
     strongly elliptic systems with boundary data from LP ...... 79
4.3  The Stokes system in a half-space ......................... 83
4.4  The Stokes system in a ball ............................... 85
4.5  The Lame system in a half-space ........................... 87
4.6  The Lame system in a ball ................................. 91
4.7  Comments to Chapter 4 ..................................... 92

Chapter 5  Sharp Constant in the Miranda-Agmon Type
Inequality for Derivatives of Solutions to Higher Order
Elliptic Equations ............................................. 93
5.1  Introduction .............................................. 93
5.2  Weak form of the Miranda-Agmon inequality with the sharp
     constant .................................................. 94
5.3  Sharp constants for biharmonic functions .................. 98
5.4  Comments to Chapter 5 .................................... 104

Chapter 6  Sharp Pointwise Estimates for Directional
Derivatives and Khavinson's Type Extremal Problems for
Harmonic Functions ............................................ 105
6.1  Introduction ............................................. 105
6.2  Khavinson's type extremal problem for bounded or
     semibounded harmonic functions in a ball and 
     a half-space ............................................. 110
6.3  Sharp estimates for directional derivatives and 
     Khavinson's type extremal problem in a half-space with
     boundary data from LP .................................... 117
6.4  Sharp estimates for directional derivatives and 
     Khavinson's type extremal problem in a ball with
     boundary data from LP .................................... 131
6.5  Sharp estimates for the gradient of a solution of the
     Neumann problem in a half-space .......................... 145
6.6  Comments to Chapter 6 .................................... 148

Chapter 7  The Norm and the Essential Norm for Double
Layer Vector-Valued Potentials ................................ 151
7.1  Introduction ............................................. 151
7.2  Definition and certain properties of a solid angle ....... 154
7.3  Matrix-valued integral operators of the double layer 
     potential type ........................................... 161
7.4  Boundary integral operators of elasticity and
     hydrodynamics ............................................ 173
7.5  Comments to Chapter 7 .................................... 197

Part 2  Parabolic Systems ..................................... 201

Chapter 8  Maximum Modulus Principle for Parabolic Systems .... 203
8.1  Introduction ............................................. 203
8.2  The Cauchy problem for systems of order 2ℓ ............... 205
8.3  Second order systems ..................................... 217
8.4  The parabolic Lamé system ................................ 230
8.5  Comments to Chapter 8 .................................... 235

Chapter 9  Maximum Modulus Principle for Parabolic Systems
with Zero Boundary Data ....................................... 237
9.1  Introduction ............................................. 237
9.2  The case of real coefficients ............................ 238
9.3  The case of complex coefficients ......................... 246
9.4  Comments to Chapter 9 .................................... 249

Chapter 10 Maximum Norm Principle for Parabolic Systems
without Lower Order Terms ..................................... 251
10.1 Introduction ............................................. 251
10.2 Some notation ............................................ 255
10.3 Representation of the constant fig.4(fig.2n, T) ................. 256
10.4 Necessary condition for validity of the maximum norm 
     principle for the system ∂u/∂t — fig.50(x, t, Dx)u = 0 ...... 259
10.5 Sufficient condition for validity of the maximum norm
     principle for the system ∂u/∂t — fig.50(x, t, Dx)u = 0 ...... 262
10.6 Necessary and sufficient condition for validity of the
     maximum norm principle for the system ∂u/∂t — 
     fig.50(х, Dx)u = 0 .......................................... 264
10.7 Certain particular cases and examples .................... 269
10.8 Comments to Chapter 10 ................................... 275

Chapter 11  Maximum Norm Principle with Respect to Smooth
Norms for Parabolic Systems ................................... 277
11.1 Introduction ............................................. 277
11.2 Representation for the constant fig.4(fig.2n, T) ................ 280
11.3 Necessary condition for validity of the maximum norm
     principle for the system ∂u/∂t — fig.50(x, t, Dx)u = 0 ...... 284
11.4 Sufficient condition for validity of the maximum norm
     principle for the system ∂u/∂t — fig.50(x, t, Dx)u = 0 with
     scalar principal part .................................... 288
11.5 Criteria for validity of the maximum norm principle for
     the system ∂u/∂t — fig.50(x, t, Dx)u = 0. Certain particular
     cases .................................................... 291
11.6 Example: criterion for validity of the maximum p-norm
     principle, 2 < p < ∞ ..................................... 294
11.7 Comments to Chapter 11 ................................... 296
Bibliography .................................................. 297
List of Symbols ............................................... 307
Index ......................................................... 313


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:42 2019. Размер: 11,961 bytes.
Посещение N 1242 c 29.10.2013