Bevrani H. Intelligent automatic generation control (Boca Raton, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBevrani H. Intelligent automatic generation control / H.Bevrani, T.Hiyama. - Boca Raton: CRC Press, 2011. - xvii, 290 p.: ill. - Incl. bibl. ref. - Ind.: p.279-290. - ISBN 978-1-4398-4953-8
 

Оглавление / Contents
 
Preface ...................................................... xiii
Acknowledgments .............................................. xvii
1  Intelligent Power System Operation and Control: Japan
   Case Study ................................................... 1
   1.1  Application of Intelligent Methods to Power Systems ..... 2
   1.2  Application to Power System Planning .................... 3
        1.2.1  Expansion Planning of Distribution Systems ....... 3
        1.2.2  Load Forecasting ................................. 4
        1.2.3  Unit Commitment .................................. 5
        1.2.4  Maintenance Scheduling ........................... 6
   1.3  Application to Power System Control and Restoration ..... 6
        1.3.1  Fault Diagnosis .................................. 6
        1.3.2  Restoration ...................................... 6
        1.3.3  Stabilization Control ............................ 7
   1.4  Future Implementations .................................. 8
   1.5  Summary ................................................. 9
   References ................................................... 9
2  Automatic Generation Control (AGO: Fundamentals and
   Concepts .................................................... 11
   2.1  AGC in a Modern Power System ........................... 11
   2.2  Power System Frequency Control ......................... 15
        2.2.1  Primary Control ................................. 18
        2.2.2  Supplementary Control ........................... 19
        2.2.3  Emergency Control ............................... 21
   2.3  Frequency Response Model and AGC Characteristics ....... 24
        2.3.1  Droop Characteristic ............................ 25
        2.3.2  Generation-Load Model ........................... 27
        2.3.3  Area Interface .................................. 27
        2.3.4  Spinning Reserve ................................ 29
        2.3.5  Participation Factor ............................ 29
        2.3.6  Generation Rate Constraint ...................... 29
        2.3.7  Speed Governor Dead-Band ........................ 30
        2.3.8  Time Delays ..................................... 30
   2.4  A Three-Control Area Power System Example .............. 31
   2.5  Summary ................................................ 35
   References .................................................. 35
3  Intelligent AGC: Past Achievements and New Perspectives ..... 37
   3.1  Fuzzy Logic AGC ........................................ 39
        3.1.1  Fuzzy Logic Controller .......................... 40
        3.1.2  Fuzzy-Based PI (PID) Controller ................. 43
   3.2  Neuro-Fuzzy and Neural-Networks-Based AGC .............. 44
   3.3  Genetic-Algorithm-Based AGC ............................ 47
   3.4  Multiagent-Based AGC ................................... 50
   3.5  Combined and Other Intelligent Techniques in AGC ....... 51
   3.6  AGC in a Deregulated Environment ....................... 54
   3.7  AGC and Renewable Energy Options ....................... 55
        3.7.1  Present Status and Future Prediction ............ 56
        3.7.2  New Technical Challenges ........................ 57
        3.7.3  Recent Achievements ............................. 58
   3.8  AGC and Microgrids ..................................... 60
   3.9  Scope for Future Work .................................. 63
        3.9.1  Improvement of Modeling and Analysis Tools ...... 63
        3.9.2  Develop Effective Intelligent Control Schemes
               for Contribution of DGs/RESs in the AGC Issue ... 64
        3.9.3  Coordination between Regulation Powers
               of DGs/RESs and Conventional Generators ......... 64
        3.9.4  Improvement of Computing Techniques and
               Measurement Technologies ........................ 64
        3.9.5  Use of Advanced Communication and Information
               Technology ...................................... 65
        3.9.6  Update/Define New Grid Codes .................... 65
        3.9.7  Revising of Existing Standards .................. 65
        3.9.8  Updating Deregulation Policies .................. 66
   3.10 Summary ................................................ 66
   References .................................................. 67
4  AGC in Restructured Power Systems ........................... 77
   4.1  Control Area in New Environment ........................ 77
   4.2  AGC Configurations and Frameworks ...................... 79
        4.2.1  AGC Configurations .............................. 79
        4.2.2  AGC Frameworks .................................. 82
   4.3  AGC Markets ............................................ 84
   4.4  AGC Response and an Updated Model ...................... 86
        4.4.1  AGC System and Market Operator .................. 86
        4.4.2  AGC Model and Bilateral Contracts ............... 89
        4.4.3  Need for Intelligent AGC Markets ................ 91
   4.5  Summary ................................................ 92
   References .................................................. 92
5  Neural-Network-Based AGC Design ............................. 95
   5.1  An Overview ............................................ 95
   5.2  ANN-Based Control Systems .............................. 97
        5.2.1  Fundamental Element of ANNs ..................... 97
        5.2.2  Learning and Adaptation ......................... 99
        5.2.3  ANNs in Control Systems ........................ 100
   5.3  Flexible Neural Network ............................... 104
        5.3.1  Flexible Neurons ............................... 104
        5.3.2  Learning Algorithms in an FNN .................. 105
   5.4  Bilateral AGC Scheme and Modeling ..................... 107
        5.4.1  Bilateral AGC Scheme ........................... 107
        5.4.2  Dynamical Modeling ............................. 108
   5.5  FNN-Based AGC System .................................. 110
   5.6  Application Examples .................................. 113
        5.6.1  Single-Control Area ............................ 115
        5.6.2  Three-Control Area ............................. 117
   5.7  Summary ............................................... 119
   References ................................................. 121
6  AGC Systems Concerning Renewable Energy Sources ............ 123
   6.1  An Updated AGC Frequency Response Model ............... 124
   6.2  Frequency Response Analysis ........................... 128
   6.3  Simulation Study ...................................... 131
        6.3.1  Nine-Bus Test System ........................... 131
        6.3.2  Thirty-Nine-Bus Test System .................... 133
   6.4  Emergency Frequency Control and RESs .................. 138
   6.5  Key Issues and New Perspectives ....................... 142
        6.5.1  Need for Revision of Performance Standards ..... 142
        6.5.2  Further Research Needs ......................... 144
   6.6  Summary ............................................... 146
   References ................................................. 146
7  AGC Design Using Multiagent Systems ........................ 149
   7.1  Multiagent System (MAS): An Introduction .............. 149
   7.2  Multiagent Reinforcement-Learning-Based AGC ........... 153
        7.2.1  Multiagent Reinforcement Learning .............. 154
        7.2.2  Area Control Agent ............................. 156
        7.2.3  RL Algorithm ................................... 156
        7.2.4  Application to a Thirty-Nine-Bus Test System ... 158
   7.3  Using GA to Determine Actions and States .............. 161
        7.3.1  Finding Individual's Fitness and Variation
               Ranges ......................................... 162
        7.3.2  Application to a Three-Control Area Power
               System ......................................... 163
   7.4  An Agent for β Estimation ............................. 165
   7.5  Summary ............................................... 169
   References ................................................. 169
8  Bayesian-Network-Based AGC Approach ........................ 173
   8.1  Bayesian Networks: An Overview ........................ 174
        8.1.1  BNs at a Glance ................................ 175
        8.1.2  Graphical Models and Representation ............ 177
        8.1.3  A Graphical Model Example ...................... 179
        8.1.4  Inference ...................................... 182
        8.1.5  Learning ....................................... 184
   8.2  AGC with Wind Farms ................................... 185
        8.2.1  Frequency Control and Wind Turbines ............ 185
        8.2.2  Generalized ACE Signal ......................... 186
   8.3  Proposed Intelligent Control Scheme ................... 187
        8.3.1  Control Framework .............................. 187
        8.3.2  BN Structure ................................... 188
        8.3.3  Estimation of Amount of Load Change ............ 190
   8.4  Implementation Methodology ............................ 193
        8.4.1  BN Construction ................................ 193
        8.4.2  Parameter Learning ............................. 194
   8.5  Application Results ................................... 195
        8.5.1  Thirty-Nine-Bus Test System .................... 195
        8.5.2  A Real-Time Laboratory Experiment .............. 200
   8.6  Summary ............................................... 204
   References ................................................. 204
9  Fuzzy Logic and AGC Systems ................................ 207
   9.1  Study Systems ......................................... 207
        9.1.1  Two Control Areas with Subareas ................ 207
        9.1.2  Thirty-Nine-Bus Power System ................... 208
   9.2  Polar-Information-Based Fuzzy Logic AGC ............... 211
        9.2.1  Polar-Information-Based Fuzzy Logic Control .... 211
        9.2.2  Simulation Results ............................. 215
               9.2.2.1  Trunk Line Power Control .............. 215
               9.2.2.2  Control of Regulation Margin .......... 217
   9.3  PSO-Based Fuzzy Logic AGC ............................. 220
        9.3.1  Particle Swarm ©ptimization .................... 220
        9.3.2  AGC Design Methodology ......................... 222
        9.3.3  PSO Algorithm for Setting of Membership
               Functions ...................................... 224
        9.3.4  Application Results ............................ 224
   9.4  Summary ............................................... 227
   References ................................................. 228
10 Frequency Regulation Using Energy Capacitor System ......... 229
   10.1  Fundamentals of the Proposed Control Scheme .......... 230
        10.1.1 Restriction of Control Action (Type I) ......... 231
        10.1.2 Restriction of Control Action (Type II) ........ 232
        10.1.3 "Prevention of Excessive Control Action
               (Type III) ..................................... 232
   10.2 Study System .......................................... 233
   10.3 Simulation Results  234
   10.4 Evaluation of Frequency Regulation Performance ........ 236
   10.5 Summary ............................................... 239
   References ................................................. 240
11 Application of Genetic Algorithm in AGC Synthesis .......... 241
   11.1 Genetic Algorithm: An Overview ........................ 242
        11.1.1 GA Mechanism ................................... 242
        11.1.2 GA in Control Systems .......................... 243
   11.2 Optimal Tuning of Conventional Controllers ............ 244
   11.3 Multiobjective GA ..................................... 248
        11.3.1 Multiobjective Optimization .................... 248
        11.3.2 Application to AGC Design ...................... 249
   11.4 GA for Tracking Robust Performance Index .............. 252
        11.4.1 Mixed H2/H .................................... 252
        11.4.2 Mixed H2/H SOF Design ......................... 253
        11.4.3 AGC Synthesis Using GA-Based Robust
               Performance Tracking ........................... 254
   11.5 GA in Learning Process ................................ 255
        11.5.1 GA for Finding Training Data in a BN-Based
               AGC Design ..................................... 257
        11.5.2 Application Example ............................ 258
   11.6 Summary ............................................... 259
   References ................................................. 261
12 Frequency Regulation in Isolated Systems with Dispersed
   Power Sources .............................................. 263
   12.1 Configuration of Multiagent-Based AGC System .......... 264
        12.1.1 Conventional AGC on Diesel Unit ................ 264
        12.1.2 Coordinated AGC on the ECS and Diesel Unit ..... 264
   12.2 Configuration of Laboratory System .................... 266
   12.3 Experimental Results .................................. 268
   12.4 Summary ............................................... 276
   References ................................................. 277

Index ......................................................... 279


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:40 2019. Размер: 17,409 bytes.
Посещение N 1437 c 29.10.2013