Beven K.J. Rainfall-runoff modelling (Chichester; Hoboken, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBeven K.J. Rainfall-runoff modelling: the primer. - 2nd ed. - Chichester; Hoboken: Wiley-Blackwell, 2012. - xxix, 457 p.: ill. - Ref.: p.397-448. - Ind.: p.449-457. - ISBN 978-0-470-71459-1
 

Оглавление / Contents
 
Preface to the Second Edition ................................ xiii
About the Author ............................................. xvii
List of Figures ............................................... xix
1  Down to Basics: Runoff Processes and the Modelling Process ... 1
   1.1  Why Model? .............................................. 1
   1.2  How to Use This Book .................................... 3
   1.3  The Modelling Process ................................... 3
   1.4  Perceptual Models of Catchment Hydrology ................ 6
   1.5  Flow Processes and Geochemical Characteristics ......... 13
   1.6  Runoff Generation and Runoff Routing ................... 15
   1.7  The Problem of Choosing a Conceptual Model ............. 16
   1.8  Model Calibration and Validation Issues ................ 18
   1.9  Key Points from Chapter 1 .............................. 21
   Box 1.1  The Legacy of Robert Elmer Horton (1875-1945) ...... 22
2  Evolution of Rainfall-Runoff Models: Survival of the
   Fittest? .................................................... 25
   2.1  The Starting Point: The Rational Method ................ 25
   2.2  Practical Prediction: Runoff Coefficients and Time
        Transformations ........................................ 26
   2.3  Variations on the Unit Hydrograph ...................... 33
   2.4  Early Digital Computer Models: The Stanford Watershed
        Model and Its Descendants .............................. 36
   2.5  Distributed Process Description Based Models ........... 40
   2.6  Simplified Distributed Models Based on Distribution
        Functions .............................................. 42
   2.7  Recent Developments: What is the Current State of the
        Art? ................................................... 43
   2.8  Where to Find More on the History and Variety of
        Rainfall-Runoff Models ................................. 43
   2.9  Key Points from Chapter 2 .............................. 44
   Box 2.1 Linearity, Nonlinearity and Nonstationarity ......... 45
   Box 2.2 The Xinanjiang, ARNO or VIC Model ................... 46
   Box 2.3 Control Volumes and Differential Equations .......... 49
3  Data for Rainfall-Runoff Modelling .......................... 51
   3.1  Rainfall Data .......................................... 51
   3.2  Discharge Data ......................................... 55
   3.3  Meteorological Data and the Estimation of
        Interception and Evapotranspiration .................... 56
   3.4  Meteorological Data and The Estimation of Snowmelt ..... 60
   3.5  Distributing Meteorological Data within a Catchment .... 61
   3.6  Other Hydrological Variables ........................... 61
   3.7  Digital Elevation Data ................................. 61
   3.8  Geographical Information and Data Management Systems ... 66
   3.9  Remote-sensing Data .................................... 67
   3.10 Tracer Data for Understanding Catchment Responses ...... 69
   3.11 Linking Model Components and Data Series ............... 70
   3.12 Key Points from Chapter 3 .............................. 71
   Box 3.1 The Penman-Monteith Combination Equation for
           Estimating Evapotranspiration Rates ................. 72
   Box 3.2 Estimating Interception Losses ...................... 76
   Box 3.3 Estimating Snowmelt by the Degree-Day Method ........ 79
4  Predicting Hydrographs Using Models Based on Data ........... 83
   4.1  Data Availability and Empirical Modelling .............. 83
   4.2  Doing Hydrology Backwards .............................. 84
   4.3  Transfer Function Models ............................... 87
   4.4  Case Study: DBM Modelling of the CI6 Catchment at
        Llyn Briane, Wales ..................................... 93
   4.5  Physical Derivation of Transfer Functions .............. 95
   4.6  Other Methods of Developing Inductive Rainfall-Runoff
        Models from Observations ............................... 99
   4.7  Key Points from Chapter 4 ............................. 106
   Box 4.1 Linear Transfer Function Models .................... 107
   Box 4.2 Use of Transfer Functions to Infer Effective
           Rainfalls .......................................... 112
   Box 4.3 Time Variable Estimation of Transfer Function
           Parameters and Derivation of Catchment
           Nonlinearity ....................................... 113
5  Predicting Hydrographs Using Distributed Models Based on
   Process Descriptions ....................................... 119
   5.1  The Physical Basis of Distributed Models .............. 119
   5.2  Physically Based Rainfall-Runoff Models at the
        Catchment Scale ....................................... 128
   5.3  Case Study: Modelling Flow Processes at Reynolds
        Creek, Idaho .......................................... 135
   5.4  Case Study: Blind Validation Test of the SHE Model
        on the Slapton Wood Catchment ......................... 138
   5.5  Simplified Distributed Models ......................... 140
   5.6  Case Study: Distributed Modelling of Runoff
        Generation at Walnut Gulch, Arizona ................... 148
   5.7  Case Study: Modelling the R-5 Catchment at
        Chickasha, Oklahoma ................................... 151
   5.8  Good Practice in the Application of Distributed
        Models ................................................ 154
   5.9  Discussion of Distributed Models Based on Continuum
        Differential Equations ................................ 155
   5.10 Key Points from Chapter 5 ............................. 157
   Box 5.1 Descriptive Equations for Subsurface Flows ......... 158
   Box 5.2 Estimating Infiltration Rates at the Soil Surface .. 160
   Box 5.3 Solution of Partial Differential Equations: Some
           Basic Concepts ..................................... 166
   Box 5.4 Soil Moisture Characteristic Functions for Use in
           the Richards Equation .............................. 171
   Box 5.5 Pedotransfer Functions ............................. 175
   Box 5.6 Descriptive Equations for Surface Flows ............ 177
   Box 5.7 Derivation of the Kinematic Wave Equation .......... 181
6  Hydrological Similarity, Distribution Functions and Semi-
   Distributed Rainfall-Runoff Models ......................... 185
   6.1  Hydrological Similarity and Hydrological Response
        Units ................................................. 185
   6.2  The Probability Distributed Moisture (PDM) and Grid
        to Grid (G2G) Models .................................. 187
   6.3  TOPMODEL .............................................. 190
   6.4  Case Study: Application of TOPMODEL to the
        Saeternbekken Catchment, Norway ....................... 198
   6.5  TOPKAPI ............................................... 203
   6.6  Semi-Distributed Hydrological Response Unit (HRU)
        Models ................................................ 204
   6.7  Some Comments on the HRU Approach ..................... 207
   6.8  Key Points from Chapter 6 ............................. 208
   Box 6.1 The Theory Underlying TOPMODEL ..................... 210
   Box 6.2 The Soil and Water Assessment Tool (SWAT) Model .... 219
   Box 6.3 The SCS Curve Number Model Revisited ............... 224
7  Parameter Estimation and Predictive Uncertainty ............ 231
   7.1  Model Calibration or Conditioning ..................... 231
   7.2  Parameter Response Surfaces and Sensitivity Analysis .. 233
   7.3  Performance Measures and Likelihood Measures .......... 239
   7.4  Automatic Optimisation Techniques ..................... 241
   7.5  Recognising Uncertainty in Models and Data: Forward
        Uncertainty Estimation ................................ 243
   7.6  Types of Uncertainty Interval ......................... 244
   7.7  Model Calibration Using Bayesian Statistical Methods .. 245
   7.8  Dealing with Input Uncertainty in a Bayesian
        Framework ............................................. 247
   7.9  Model Calibration Using Set Theoretic Methods ......... 249
   7.10 Recognising Equifinality: The GLUE Method ............. 252
   7.11 Case Study: An Application of the GLUE Methodology
        in Modelling the Saeternbekken MINIFELT Catchment,
        Norway ................................................ 258
   7.12 Case Study: Application of GLUE Limits of
        Acceptability Approach to Evaluation in Modelling
        the Brue Catchment, Somerset, England ................. 261
   7.13 Other Applications of GLUE in Rainfall-Runoff
        Modelling ............................................. 265
   7.14 Comparison of GLUE and Bayesian Approaches to
        Uncertainty Estimation ................................ 266
   7.15 Predictive Uncertainty, Risk and Decisions ............ 267
   7.16 Dynamic Parameters and Model Structural Error ......... 268
   7.17 Quality Control and Disinformation in Rainfall-
        Runoff Modelling ...................................... 269
   7.18 The Value of Data in Model Conditioning ............... 274
   7.19 Key Points from Chapter 7 ............................. 274
   Box 7.1 Likelihood Measures for use in Evaluating Models ... 276
   Box 7.2 Combining Likelihood Measures ...................... 283
   Box 7.3 Defining the Shape of a Response or Likelihood
           Surface ............................................ 284
8  Beyond the Primer: Models for Changing Risk ................ 289
   8.1  The Role of Rainfall-Runoff Models in Managing
        Future Risk ........................................... 289
   8.2  Short-Term Future Risk: Flood Forecasting ............. 290
   8.3  Data Requirements for Flood Forecasting ............... 291
   8.4  Rainfall-Runoff Modelling for Flood Forecasting ....... 293
   8.5  Case Study: Flood Forecasting in the River Eden
        Catchment, Cumbria, England ........................... 297
   8.6  Rainfall-Runoff Modelling for Flood Frequency
        Estimation ............................................ 299
   8.7  Case Study: Modelling the Flood Frequency
        Characteristics on the Skalka Catchment, Czech
        Republic .............................................. 302
   8.8  Changing Risk: Catchment Change ....................... 305
   8.9  Changing Risk: Climate Change ......................... 307
   8.10 Key Points from Chapter 8 ............................. 309
   Box 8.1 Adaptive Gain Parameter Estimation for Real-Time
           Forecasting ........................................ 311
9  Beyond the Primer: Next Generation Hydrological Models ..... 313
   9.1  Why are New Modelling Techniques Needed? .............. 313
   9.2  Representative Elementary Watershed Concepts .......... 315
   9.3  How are the REW Concepts Different from Other
        Hydrological Models? .................................. 318
   9.4  Implementation of the REW Concepts .................... 318
   9.5  Inferring Scale-Dependent Hysteresis from Simplified
        Hydrological Theory ................................... 320
   9.6  Representing Water Fluxes by Particle Tracking ........ 321
   9.7  Catchments as Complex Adaptive Systems ................ 324
   9.8  Optimality Constraints on Hydrological Responses ...... 325
   9.9  Key Points from Chapter 9 ............................. 327
10 Beyond the Primer: Predictions in Ungauged Basins .......... 329
   10.1 The Ungauged Catchment Challenge ...................... 329
   10.2 The PUB Initiative .................................... 330
   10.3 The MOPEX Initiative .................................. 331
   10.4 Ways of Making Predictions in Ungauged Basins ......... 331
   10.5 PUB as a Learning Process ............................. 332
   10.6 Regression of Model Parameters Against Catchment
        Characteristics ....................................... 333
   10.7 Donor Catchment and Pooling Group Methods ............. 335
   10.8 Direct Estimation of Hydrograph Characteristics for
        Constraining Model Parameters ......................... 336
   10.9 Comparing Regionalisation Methods for Model
        Parameters ............................................ 338
   10.10 HRUs and LSPs as Models of Ungauged Basins ........... 339
   10.11 Gauging the Ungauged Basin ........................... 339
   10.12 Key Points from Chapter 10 ........................... 341
11 Beyond the Primer: Water Sources and Residence Times in
   Catchments ................................................. 343
   11.1 Natural and Artificial Tracers ........................ 343
   11.2 Advection and Dispersion in the Catchment System ...... 345
   11.3 Simple Mixing Models .................................. 346
   11.4 Assessing Spatial Patterns of Incremental Discharge ... 347
   11.5 End Member Mixing Analysis (EMMA) ..................... 347
   11.6 On the Implications of Tracer Information for
        Hydrological Processes ................................ 348
   11.7 Case Study: End Member Mixing with Routing ............ 349
   11.8 Residence Time Distribution Models .................... 353
   11.9 Case Study: Predicting Tracer Transport at the
        Gårdsjön Catchment, Sweden ............................ 357
   11.10 Implications for Water Quality Models ................ 359
   11.11 Key Points from Chapter 11 ........................... 360
   Box 11.1 Representing Advection and Dispersion ............. 361
   Box 11.2 Analysing Residence Times in Catchment Systems .... 365
12 Beyond the Primer: Hypotheses, Measurements and Models of
   Everywhere ................................................. 369
   12.1 Model Choice in Rainfall-Runoff Modelling as
        Hypothesis Testing .................................... 369
   12.2 The Value of Prior Information ........................ 371
   12.3 Models as Hypotheses .................................. 372
   12.4 Models of Everywhere .................................. 374
   12.5 Guidelines for Good Practice .......................... 375
   12.6 Models of Everywhere and Stakeholder Involvement ...... 376
   12.7 Models of Every where and Information ................. 377
   12.8 Some Final Questions .................................. 378
Appendix A Web Resources for Software and Data ................ 381
Appendix В Glossary of Terms .................................. 387
References .................................................... 397
Index ......................................................... 449


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:40 2019. Размер: 18,414 bytes.
Посещение N 1613 c 29.10.2013