Preface ....................................................... xix
Introduction
Acid Gas Injection: Past, Present, and Future ................. xxi
John J. Carroll
Section 1: Data and Correlation
1 Equilibrium Water Content Measurements For Acid Gas
Mixtures ..................................................... 3
R.A. Marriott, E. Fitzpatrick, F. Bernard, H. H. Wan,
K.L. Lesage, P.M. Davis, and P.D. Clark
1.1 Introduction ............................................ 4
1.2 Available Literature Data ............................... 6
1.3 Equilibration Vessels/Techniques ........................ 9
1.3.1 The Visual Dew Point Cell, VDP .................. 10
1.3.2 The Stirred Autoclave, SA, and Basic
Equilibrium Cell, EQ ............................ 11
1.3.3 The Isolated Floating Piston with Micro
Sampler, IFP/μS ................................. 13
1.4 Water Analysis ......................................... 14
1.5 Sampling Issues for Analytic Methods ................... 15
1.6 Some Recent Results and Future Directions .............. 17
References .................................................. 19
2 The Performance of State of the Art Industrial
Thermodynamic Models for the Correlation and Prediction
of Acid Gas Solubility in Water ............................. 21
Marco A. Satyro and James van der Lee
2.1 Introduction ........................................... 21
2.2 Thermodynamic Modeling ................................. 22
2.3 Water Content .......................................... 28
2.4 Conclusions and Recommendations ........................ 31
Acknowledgements ............................................ 33
Nomenclature ................................................ 33
Subscripts .................................................. 34
2.1 Superscripts ........................................... 34
Greek Letters ............................................... 34
References .................................................. 34
3 The Research on Experiments and Theories about
Hydrates in High-Sulfur Gas Reservoirs ...................... 37
Liu Jianyi, Zhang Guangdong, Ye Changqing, Zhang Jing and
Liu Yanli
3.1 Introduction ........................................... 38
3.1.1 The Progress of Experimental Test in High-CO2
or H2S-containing System ........................ 38
3.1.2 The Progress of Prediction Model of High-CO2
or H2S-containing System ........................ 39
3.2 Experimental Tests ..................................... 40
3.2.1 Experimental Process ............................ 40
3.2.2 Experimental Samples ............................ 40
3.2.3 Experimental Results ............................ 40
3.2.4 Alcohol and Glycol Systems ...................... 41
3.2.5 Electrolytes Systems ............................ 43
3.3 Thermodynamic Model .................................... 44
3.3.1 The Improvement of Chemical Potential
of Hydration Phase .............................. 44
3.3.2 Calculation of Activity of Water Phase .......... 47
3.3.3 The Phase Equilibrium Calculation of
Water-gas- Electrolytes- Alcohols ............... 47
3.3.4 The Definition of Freezing Point in
Inhibitors-containing System .................... 51
3.3.5 Improved Prediction Model of Hydrate ............ 51
3.4 Experimental Evaluation ................................ 52
3.4.1 Experimental Evaluation of Thermodynamics
Prediction Model ef Hydrate ..................... 52
3.4.2 The Error Evaluation of the Improved Model for
Experimental Data ............................... 53
3.4.3 Pure Water is Water-rich in System .............. 53
3.4.4 The Alcohol Solution is Water-rich in System .... 54
3.4.5 The Electrolytes Solution is Water-rich in
System .......................................... 55
3.4.6 The Mixed of Electrolytes and Methanol
Solution is Water-rich in System ................ 56
3.5 Conclusions ............................................ 57
Acknowledgements ............................................ 58
References .................................................. 58
4 An Association Model for the Correlation of the Solubility
of Elemental Sulfur in Sour Gases ........................... 61
Bian Xiaoqing, Du Z. Himin and Chen Jing
4.1 Introduction ........................................... 61
4.2 Derivation of an Association Model ..................... 62
4.3 Calculation and Analysis of Solubility ................. 67
4.4 Conclusions ............................................ 72
Acknowledgements ............................................ 73
References .................................................. 73
5 Properties of CO2 Relevant To Sequestration - Density ....... 75
Sara Anwar and John J. Carroll
5.1 Introduction ........................................... 75
5.2 Review and Correlation ................................. 78
5.2.1 Equations of State .............................. 78
5.3 Density ................................................ 80
References .................................................. 80
6 The Experimental Study of the Effect of the CO2 Content on
Natural Gas Properties at Gathering Conditions .............. 81
Du Jianfen, Нu Yue, Guo Ping, Deng Lei, and Yang Suyun
6.1 Introduction ........................................... 82
6.2 Experimental Test Process .............................. 82
6.3 Experimental Principles and Methods .................... 83
6.4 Experimental Conditions ................................ 83
6.5 Analysis of Experimental Results ....................... 84
6.6 Conclusions ........................................... 1O2
Section 2: Process Engineering
7 Dehydration of Acid Gas Prior to Injection ................. 107
Eugene W. Grynia, John J. Carroll, and Peter J. Griffin
7.1 Introduction .......................................... 107
7.2 Acid Gas Phase Diagrams ............................... 108
7.3 Water Content of Acid Gas ............................. 109
7.4 Water Content of Acid Gas for Different Isotherms ..... 111
7.5 Effect of Impurities on Water Content of Acid Gas ..... 115
7.6 Acid Gas Dehydration .................................. 116
7.6.1 Compression and Cooling Alone .................. 117
7.6.2 Acid Gas Dehydration with TEG .................. 118
7.7 Hydrates of Acid Gas .................................. 125
7.8 Conclusions ........................................... 127
References ................................................. 127
8 Limitations And Challenges Associated With The Disposal
Of Mercaptan-Rich Acid Gas Streams By Injection - A Case
Study ...................................................... 129
Felise Man and John J. Carroll
8.1 Properties of Mercaptans .............................. 130
8.1.1 Pure Component Properties ...................... 130
8.1.2 Phase Equilibrium .............................. 131
8.1.3 Water Content and Solubility ................... 131
8.1.4 Hydrates ....................................... 131
8.2 Limitations of Process Simulation Tools and Process
Design ................................................ 132
8.2.1 Vapour-Liquid Equilibria and Hydrate
Formation ...................................... 133
8.2.2 Water Content and Dehydration Processes ........ 133
8.3 Case Study ............................................ 134
8.3.1 Injection Pressures ............................ 136
8.3.2 Phase Envelopes and Compression ................ 136
8.3.3 Dehydration .................................... 137
8.4 Conclusions ........................................... 139
References ................................................. 139
9 Acid Gas: When to Inject and When to Incinerate ............ 141
Audrey Mascarenhas
9.1 Incineration Technology ............................... 142
9.2 Conclusion ............................................ 145
10 Dynamics of Acid Gas Injection Well Operation .............. 147
R. Mireault, R. Stocker, D. Dunn, and M. Pooladi-Darvish
10.1 Introduction .......................................... 148
10.2 Effects of Gas Composition ............................ 152
10.3 Determining Wellhead Operating Pressure ............... 154
10.4 Computing Wellbore Pressure Changes ................... 156
10.5 Example 1 ............................................. 157
10.6 Example 2 ............................................. 159
10.7 Sensitivity Analysis .................................. 161
10.8 Conclusions ........................................... 163
Acknowledgements ........................................... 164
References ................................................. 164
Section 3: CO2 Enhanced Oil Recovery
11 Learnings from CO2 Miscible Floods Provides Design
Guidelines for CO2 Sequestration ........................... 167
Jim Louie
11.1 Introduction .......................................... 167
11.2 Encana Weyburn and Apache Midale Projects ............. 169
11.3 Why CO, for EOR? ...................................... 177
11.4 Properties of CO2 ..................................... 178
11.5 CO2 Dehydration ....................................... 179
11.6 Materials Selection ................................... 182
11.6.1 Supply Carbon Dioxide Pipeline ................. 182
11.6.2 Production Pipelines ........................... 183
11.7 Mercaptans ............................................ 184
11.8 Safety Hazards of CO2 ................................. 185
11.9 Capital Costs ......................................... 187
11.10 Summary .............................................. 189
References ................................................. 189
12 Reservoir Simulation of CO2 Injection after Water
Flooding in Xinli Oil Field ................................ 191
Fu Yu, Du Zhimin and Guo Xiao
12.1 Introduction .......................................... 192
12.2 The Xinli Field ....................................... 192
12.3 CO2 Flooding Parameters ............................... 193
12.3.1 Crude Oil Properties ........................... 193
12.3.1.1 Fluid Properties under Surface
Condition ............................. 193
12.3.1.2 Underground Fluid Properties .......... 194
12.3.1.3 Crude Oil Property after CO2
Flooding .............................. 194
12.3.2 CO2 Flooding Displacement Efficiency ........... 195
12.3.3 The Comparison between Different COz Hooding
Mode ........................................... 196
12.4 Numerical Simulations ................................. 197
12.4.1 Compositional Model of Xinli Unit .............. 197
12.4.2 Static Reserve Matching ........................ 198
12.4.3 Residual Oil Distribution Prediction ........... 198
12.5 The Numerical Simulation of Xinli District ............ 198
12.5.1 The Parameter Optimization of WAG Injection .... 198
12.5.1.1 Water-Gas Ratio Optimization .......... 202
12.5.1.2 Slug Size Optimization ................ 202
12.5.1.3 Gas Injection Rate Optimization ....... 203
12.5.2 Development Scheme ............................. 204
12.6 Conclusions ........................................... 208
References ................................................. 208
13 Study on Development Effect of CO2 Huff and Puff Process
in Horizontal Well in Normal Heavy Oil Reservoir ........... 209
Guo Ping, Huang Qin, Li Min, Zhang Wei, Du Jianfen and
Zhao Biribin
13.1 Overview .............................................. 210
13.2 Stimulation Mechanism of CO2 Huff and Puff Process .... 211
13.2.1 Crude Oil PVT Test ............................. 211
13.2.2 CO2-Oil Swelling Test .......................... 211
13.2.3 Indoor Carbon dioxide Huff and Puff Process
in the Long Core ............................... 214
13.3 Single Well Numerical Simulation of CO2 Huff and
Puff Process .......................................... 218
13.3.1 Built Single Well Geological Model ............. 218
13.3.2 Phase Behavior and History Matching ............ 218
13.3.3 Design of Development Program of CO2 Huff and
Puff Process ................................... 220
13.3.4 Analyses of Numerical Simulation Results ....... 223
13.4 Conclusions ........................................... 228
References ................................................. 229
14 The Study on Mathematic Models of Multi-Phase Porous Flow
for CO2 Drive in Ultra-Low Permeability and Its
Application ................................................ 231
Zhu Weiyao, Ju Yan, Chen Jiecheng and Liu Jinzi
14.1 Introduction .......................................... 231
14.2 Mathematical Model of Oil Displacement with CO2
Injection in the Ultra-low Permeability Reservoir ..... 232
14.2.1 Building the Mathematical Model ................ 232
14.2.2 Characteristic Equation ........................ 235
14.2.2.1 Saturation Equation ................... 235
14.2.2.2 Concentration Equation for All-
components ............................ 235
14.2.2.3 Relative Permeability ................. 236
14.2.2.4 Effective Viscosity ................... 236
14.3 Experimental Study of Ultra-low Permeability
Reservoir CO2 Flooding ................................ 236
14.4 Numerical Simulation .................................. 238
14.4.1 Numerical Simulation of an Ideal Model ......... 238
14.4.1.1 Numerical Simulation Programming ...... 238
14.4.1.2 Design of Mathematically Geological
Models ................................ 239
14.4.1.3 Characteristics of the Physical
Properties Change ..................... 239
14.4.2 Numerical Simulation of the Experiment Pilot
Area ........................................... 242
14.4.2.1 Experimental Zone ..................... 242
14.4.2.2 History Matching and Production
Forecasting ........................... 242
14.4.2.3 Simulation Program Optimization ....... 244
14.4.2.4 Comparison and Prediction of the
Production ............................ 244
14.5 Conclusion ............................................ 248
References ................................................. 249
15 Experimental Appraisal and Single-well Simulation for CO2
Injection Feasibility in Liaohe Light Oil Blocks ........... 251
Xiong Yu, Zhang Liehui, Sun Lei and Wu Yi
15.1 Introduction .......................................... 251
15.2 Phase Behavior of Formation Crude ..................... 252
15.3 CO2 Injection Experiment and Fluid Properties ......... 254
15.4 CO2 Injection Feasibility Analysis and Parameter
Optimization of XB-S3 ................................. 257
15.4.1 Geological Features ............................ 257
15.4.2 Reservoir Characteristics ...................... 257
15.4.3 Numerical Simulation and Parameter
Optimization ................................... 258
15.5 Conclusion ............................................ 262
References ................................................. 262
16 Experiment Study about Phase Transition Characteristics
of CO2 in Low-permeable Porous Media ....................... 263
Guo Ping, Wang Juan, Fan Jianming and Luo Yuqiong
16.1 Introduction .......................................... 264
16.2 Testing System ........................................ 265
16.2.1 Principles of Ultrasonic Testing ............... 265
16.2.2 Testing Procedure [11] ......................... 265
16.3 Testing Devices ....................................... 266
16.4 Test Results and Discussions .......................... 268
16.4.1 26°C ........................................... 268
16.4.2 48°C ........................................... 270
16.5 Experiment Phenomenon ................................. 270
16.6 Conclusions ........................................... 272
References ................................................. 272
17 Mechanism Evaluation of Carbon Dioxide Miscible
Flooding - Caoshe Oilfield, a Case Study ................... 275
Tang Yong, Du Zhimin, Sun Lei, Yu Kai, Liu Wei
and Chen Zuhua
17.1 Introduction .......................................... 276
17.2 Phase Behavior Experiment Simulation of CO2
Injection in CS Oilfield .............................. 277
17.2.1 Reservoir Introduction ......................... 277
17.2.2 Fluid Composition .............................. 277
17.2.3 Match the Fluid PVT Phase Behavior Experiment
and CO2 Injection Swelling Test ................ 278
17.3 Evaluation of CO2 Injection Minimum Miscibility
Pressure .............................................. 279
17.3.1 Determination of MMP by Slim Tube Test and
Numerical Simulation ........................... 279
17.3.2 Determination of Injecting CO2 Miscibility
Pressure by Pseudo-ternary Phase Diagram ....... 282
17.3.3 Miscibility Evaluation at Current Formation
Pressure ....................................... 284
17.4 Mechanism Evaluation of CO2 Miscible Flooding
by One-dimensional Simulation ......................... 284
17.4.1 Component Changing Law ........................ 284
17.5 Miscible Flooding Processes in Profile Model of
Injector-producer Well Group .......................... 285
17.5.1 The CO2 Sweeping Area Increasing ............... 286
17.5.2 Crude Oil Viscosity Reduces Sharply in CO2
Swept Region ................................... 286
17.5.3 Miscible Bank Formation Around the Producer
after COz Injection ............................ 289
17.6 Conclusions ........................................... 291
References ................................................. 292
18 Selecting and Performance Evaluating of Surfactant in
Carbon Dioxide Foam Flooding in Caoshe Oil Field ........... 293
Yi Xiangyi, Zhang Shaonan, Lu Yuan, Li Chun, Jiao Lili
and Liu Wei
18.1 Introduction .......................................... 294
18.2 Geological Characteristics in Taizhou Formation
of Caoshe Oil Field ................................... 295
18.2.1 Oil Field Summary .............................. 295
18.2.2 Characteristics of Reservoir Geology and
Fluid .......................................... 295
18.2.3 Heterogeneity .................................. 296
18.3 Techniques to Improve the Effect of CO2 Flooding ...... 298
18.4 Selecting and Evaluating of Surfactant ................ 299
18.4.1 Temperature-enduring and Salt-resistant
Surfactant Selecting ........................... 299
18.4.1.1 Foaming Agent Selecting ............... 299
18.4.1.2 Foaming Agent Concentration ........... 301
18.4.1.3 Surface Tension ....................... 302
18.4.1.4 Rheological Property .................. 302
18.4.2 Main Performance Evaluating of Surfactant ...... 303
18.4.2.1 Experiment Materials and Methods ...... 303
18.4.2.2 Frothing Capacity ..................... 304
18.4.2.3 Influencing Factors on the Foam
Stability ............................. 304
18.4.2.4 Sealing Characteristics ............... 306
18.5 Conclusions ........................................... 308
References ................................................. 309
Section 4: Materials and Corrosion
19 Casing and Tubing Design for Sour Oil & Gas Field .......... 313
Sun Yongxing, Lin Yuanhua, Wang Zhongsheng,
Shi Taihe, You Xiaobo, Zhang Guo, Liu Hongbin, and Zhu
Dajiang
19.1 Introduction .......................................... 314
19.2 SSC Testing ........................................... 315
19.3 Casing and Tubing Design in Fracture Mechanics ........ 316
19.3.1 Material Yield Strength and Hardness ........... 316
19.3.2 Design Equation for Fracture of the Pipe Body .. 317
19.3.3 Anti-fracture Capability Assessment of Casing
C110 and T95 in Sour Environments .............. 320
19.4 Conclusions ........................................... 324
References ................................................. 325
20 Material Evaluation and Selection of OCTG and Gathering
Lines for High Sour Gas Fields in China .................... 327
Zeng Dezhi, Huang Liming, Gu Tan, Lin Yuanhua,
Liu Zhide, Yuan Xi, Zhu Hongjun, Huo Shaoquan, and Xiao
Xuelan
20.1 Introduction .......................................... 328
20.2 Material Evaluation and Selection of OCTG for High
Sour Gas Fields ....................................... 328
20.3 Indoor Corrosion Evaluation ........................... 329
20.3.1 Anti-SSC Performance Evaluation of OCTG ........ 329
20.3.2 Electrochemical Corrosion Resistance
Evaluation of OCTG ............................. 329
20.4 Field Corrosion Evaluation in Tian Dong 5-1 ........... 332
20.4.1 Evaluation of Electrochemical Corrosion ........ 333
20.4.2 Evaluation of Stress Corrosion ................. 334
20.5 Material Evaluation and Selection of Gathering Lines
for High Sour Gas Fields .............................. 334
20.6 Indoor Corrosion Evaluation ........................... 335
20.6.1 Anti-SSC Performance Evaluation of Gathering
and Transportation Pipelines and its Welded
Joints ......................................... 335
20.6.2 Electrochemical Corrosion Resistance
Evaluation of Gathering and Transportation
Pipelines and its Welded Joints ................ 337
20.6.3 Corrosion Evaluation of X52/825 Clad Pipe and
Welding Gaps ................................... 337
20.7 Field Corrosion Evaluation in Tian Dong 5-1 ........... 340
20.8 Conclusion ............................................ 342
References ................................................. 343
Section 5: Reservoir Engineering, Geology, and Geochemistry
21 Concentration Gradients Associated With Acid Gas
Injection .................................................. 347
S.J. Talman and E.H. Perkins
21.1 Introduction .......................................... 348
21.2 Results ............................................... 350
21.2.1 Mineralogical Results .......................... 350
21.2.2 Water Chemistry ................................ 350
21.2.3 Closed System Reaction Analysis ................ 351
21.2.4 Reactive Flow Modelling ........................ 352
21.3 Conclusions ........................................... 358
Acknowledgments ............................................ 358
References ................................................. 358
22 A New Comprehensive Mathematical Model of Formation
Damage in Fractured Gas Reservoirs with High H2S Content ... 361
Fu Dekui, Guo Xiao, Du Zhimin, Fu Yu, Zhang Yong, Deng
Shenghui, and Liu Linqing
22.1 Introduction .......................................... 362
22.2 Mathematical Model .................................... 364
22.2.1 Mass Conservation Formulation .................. 365
22.2.2 Deposition Mechanism ........................... 366
22.2.3 Prediction Model of Sulfur Solubility, in
Sour Gas ....................................... 367
22.2.4 Sulfur Adsorption Model ........................ 368
22.2.5 Permeability Damage Model ...................... 368
22.2.6 Calculation of Migration Velocity of Sulfur
Particle in Gas Mixture ........................ 369
22.2.7 Calculation of Deposition Velocity of Sulfur
Particle in Gas Mixture ........................ 369
22.2.8 Auxiliary Equation ............................. 379
22.3 Case Application ...................................... 371
22.3.1 Case Description ............................... 371
22.3.2 Set up and Division of Grid Model .............. 371
22.3.3 Result Analysis ................................ 372
22.4 Conclusions ........................................... 375
Nomenclature ............................................... 376
Acknowledgments ............................................ 377
References ................................................. 377
23 Evaluation of Formation Damage Due to Sulfur Deposition .... 379
Guo Xiao, Du Zhimin, Yang Xuefeng, Zhang Yong,
and Fu Dekui
23.1 Introduction .......................................... 399
23.2 Experimental Investigation of Sulfur Deposition ....... 380
23.3 Deposited Sulfur of Core Samples ...................... 381
23.4 Experimental Results .................................. 381
23.5 Conclusions ........................................... 334
Acknowledgments ............................................ 384
References ................................................. 334
24 Numerical Simulation Studies on Sour Gas Flowing
Mechanisms in Gas Reservoirs with High H2S Content ......... 387
Zhang Yong, Du Zhimin, Guo Xiao, and Yang Xuefeng
24.1 Introduction .......................................... 388
24.2 Phase Behavior Characteristics of Highly Sour Gas
Systems ............................................... 339
24.2.1 Sulfur Dissolution and Precipitation in
the Sour Gas ................................... 389
24.2.1.1 Sulfur Dissolution Mechanism
in Sour Gas ........................... 389
24.2.1.2 Sulfur Solubility Prediction Model .... 390
24.2.1.3 Chrastil's Thermodynamic Model ........ 390
24.2.1.4 Phase Equilibrium Calculation Model ... 391
24.3 Sour Gas Flow Numerical Model for Highly Sour Gas
Reservoir ............................................. 391
24.3.1 Mechanisms and Model Development for Sulfur
Particle Movement .............................. 391
24.3.1.1 Mechanisms for Sulfur Particle
Movement .............................. 391
24.3.1.2 Dynamic Model for Gas-Solid Movement .. 392
24.3.2 Formation Damage Caused by Sulfur Deposition ... 393
24.3.2.1 Gas-Solid Coupled Mathematical Model
for Highly Sour Gas Reservoir ......... 394
24.3.2.2 Sulfur Continuity Equation based on
Gas-solid Slip Model .................. 394
24.3.2.3 Partial Differential Continuity
Equations for Hydrocarbon Components
in the Gas ............................ 395
24.3.2.4 Sulfur Precipitation Model ............ 395
24.3.3 Situation Study for Fluid Flow in Porous
Medium ......................................... 395
24.3.3.1 Gas Rate Effect ....................... 395
24.3.3.2 Initial H2S Concentration Effect ...... 396
24.3.3.3 Formation Permeability Effect ......... 397
24.4 Conclusions ........................................... 398
References ................................................. 399
25 Why Does Shut-In Well Head Pressure of Sour Gas Well
Decrease During Formation Testing? ......................... 401
Guo Xiao, Du Zhimin and Fu Dekui
25.1 Introduction .......................................... 401
25.2 Mathematical Model of Heavy Gas Fraction .............. 403
25.2.1 Assumptions .................................... 403
25.2.2 Establish Mathematical Model of Heavy
Components Sedimentation ....................... 403
25.3 Analysis of Heavy Gas Fraction ........................ 405
25.4 Analysis of Factors Affecting the Pressure
Numeration in Sour Gas Wells .......................... 408
25.5 Conclusion ............................................ 499
Acknowledgments ............................................ 409
References ................................................. 429
26 Impaction of the Stacking Pattern of Sandstone and
Mudstone on the Porosity and Permeability of Sandstone
Reservoirs in Different Buried Depths ...................... 411
Zhong Dekang and Zhu Xiaomin
26.1 Introduction .......................................... 412
26.2 Stacking Pattern of Sandstone and Mudstone ............ 413
26.3 The Characteristics of Physical Property of
Reservoirs in Sandstone-mudstone Interbed ............. 416
26.4 The Discussion of Variation Mechanism of Physical
Properties of Sandstone - Mudstone Interbed ........... 421
26.5 Conclusion ............................................ 424
Acknowledgements ........................................... 425
References ................................................. 425
Index ......................................................... 429
|