Rockafellar R.T. Variational analysis (Berlin; Heidelberg, 1998 (2009)). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRockafellar R.T. Variational analysis / R.T.Rockafellar, R.J.-B. Wets. - Berlin; Heidelberg: Springer, 1998 (2009). - 734 p.: ill. - (Grundlehren der mathematischen Wissenschaften). - Ref.: p.684-708. - ISBN 978-3-540-62772-2; ISSN 0072-7830
 

Оглавление / Contents
 
Chapter 1. Max and Min .......................................... 1
A  Penalties and Constraints .................................... 2
B  Epigraphs and Semicontinuity ................................. 7
C  Attainment of a Minimum ..................................... 11
D  Continuity, Closure and Growth .............................. 13
E  Extended Arithmetic ......................................... 15
F  Parametric Dependence ....................................... 16
G  Moreau Envelopes ............................................ 20
H  Epi-Addition and Epi-Multiplication ......................... 23
L  Auxiliary Facts and Principles .............................. 28
Commentary ..................................................... 34

Chapter 2. Convexity ........................................... 38
A  Convex Sets and Functions ................................... 38
B  Level Sets and Intersections ................................ 42
C  Derivative Tests ............................................ 45
D  Convexity in Operations ..................................... 49
E  Convex Hulls ................................................ 53
F  Closures and Continuity ..................................... 57
G  Separation .................................................. 62
R  Relative Interiors .......................................... 64
I  Piecewise Linear Functions .................................. 67
J  Other Examples .............................................. 71
Commentary ..................................................... 74

Chapter 3. Cones and Cosmic Closure ............................ 77
A  Direction Points ............................................ 77
B  Horizon Cones ............................................... 80
C  Horizon Functions ........................................... 86
D  Coercivity Properties ....................................... 90
E  Cones and Orderings ......................................... 95
F  Cosmic Convexity ............................................ 97
G  Positive Hulls .............................................. 99
Commentary .................................................... 105

Chapter 4. Set Convergence .................................... 108
A  Inner and Outer Limits ..................................... 109
B  Painleve-Kuratowski Convergence ............................ 111
C  Pompeiu-Hausdorff Distance ................................. 117
D  Cones and Convex Sets ...................................... 118
E  Compactness Properties ..................................... 120
F  Horizon Limits ............................................. 122
G  Continuity of Operations ................................... 125
H  Quantification of Convergence .............................. 131
I  Hyperspace Metrics ......................................... 138
Commentary .................................................... 144

Chapter 5. Set-Valued Mappings ................................ 148
A  Domains, Ranges and Inverses ............................... 149
B  Continuity and Semicontinuity .............................. 152
C  Local Boundedness .......................................... 157
D  Total Continuity ........................................... 164
E  Pointwise and Graphical Convergence ........................ 166
F  Equicontinuity of Sequences ................................ 173
G  Continuous and Uniform Convergence ......................... 175
H  Metric Descriptions of Convergence ......................... 181
I  Operations on Mappings ..................................... 183
J  Generic Continuity and Selections .......................... 187
Commentary .................................................... 192

Chapter 6. Variational Geometry ............................... 196
A  Tangent Cones .............................................. 196
B  Normal Cones and Clarke Regularity ......................... 199
C  Smooth Manifolds and Convex Sets ........................... 202
D  Optimality and Lagrange Multipliers ........................ 205
E  Proximal Normals and Polarity .............................. 212
F  Tangent-Normal Relations ................................... 217
G  Recession Properties ....................................... 222
H  Irregularity and Convexification ........................... 225
I  Other Formulas ............................................. 227
Commentary .................................................... 232

Chapter 7. Epigraphical Limits ................................ 238
A  Pointwise Convergence ...................................... 239
B  Epi-Convergence ............................................ 240
C  Continuous and Uniform Convergence ......................... 250
D  Generalized Differentiability .............................. 255
E  Convergence in Minimization ................................ 262
F  Epi-Continuity of Function-Vahied Mappings ................. 269
G  Continuity of Operations ................................... 275
H  Total Epi-Convergence ...................................... 278
I  Epi-Distances .............................................. 282
J  Solution Estimates ......................................... 286
Commentary .................................................... 292

Chapter 8. Subderivatives and Subgradients .................... 298
A  Subderivatives of Functions ................................ 299
B  Subgradients of Functions .................................. 300
C  Convexity and Optimality ................................... 308
D  Regular Subderivatives ..................................... 311
E  Support Functions and Subdifferential Duality .............. 317
F  Calmness ................................................... 322
G  Graphical Differentiation of Mappings ...................... 324
H  Proto-Differentiability and Graphical Regularity ........... 329
I  Proximal Subgradients ...................................... 333
J  Other Results .............................................. 336
Commentary .................................................... 343

Chapter 9. Lipschitzian Properties ............................ 349
A  Single-Valued Mappings ..................................... 349
B  Estimates of the Lipschitz Modulus ......................... 354
C  Subdifferential Characterizations .......................... 358
D  Derivative Mappings and Their Norms ........................ 364
E  Lipschitzian Concepts for Set-Valued Mappings .............. 368
F  Aubin Property and Mordukhovich Criterion .................. 376
G  Metric Regularity and Openness ............................. 386
H  Semiderivatives and Strict Graphical Derivatives ........... 390
I  Other Properties ........................................... 399
J  Rademacher's Theorem and Consequences ...................... 403
K  Mollifiers and Extremals ................................... 408
Commentary .................................................... 415

Chapter 10. Subdifferential Calculus .......................... 421
A  Optimality and Normals to Level Sets ....................... 421
B  Basic Chain Rule ........................................... 426
C  Parametric Optimality ...................................... 432
D  Rescaling .................................................. 438
E  Piecewise Linear-Quadratic Functions ....................... 440
F  Amenable Sets and Functions ................................ 442
G  Semiderivatives and Subsmoothness .......................... 446
H  Coderivative Calculus ...................................... 452
I  Extensions ................................................. 458
Commentary .................................................... 469

Chapter 11. Dualization ....................................... 473
A  Legendre-Fenchel Transform ................................. 473
B  Special Cases of Conjugacy ................................. 476
C  The Role of Differentiability .............................. 480
D  Piecewise Linear-Quadratic Functions ....................... 484
E  Polar Sets and Gauges ...................................... 490
F  Dual Operations ............................................ 493
G  Duality in Convergence ..................................... 500
H  Dual Problems of Optimization .............................. 502
I  Lagrangian Functions ....................................... 508
J  Minimax Problems ........................................... 514
K  Augmented Lagrangians and Nonconvex Duality ................ 518
L  Generalized Conjugacy ...................................... 525
Commentary .................................................... 529

Chapter 12. Monotone Mappings ................................. 533
A  Monotonicity Tests and Maximality .......................... 533
B  Minty Parameterization ..................................... 537
C  Connections with Convex Functions .......................... 542
D  Graphical Convergence ...................................... 551
E  Domains and Ranges ......................................... 553
F  Preservation of Maximality ................................. 556
G  Monotone Variational Inequalities .......................... 559
H  Strong Monotonicity and Strong Convexity ................... 562
I  Continuity and Differentiability ........................... 567
Commentary .................................................... 575

Chapter 13. Second-Order Theory ............................... 579
A  Second-Order Differentiability ............................. 579
B  Second Subderivatives ...................................... 582
C  Calculus Rules ............................................. 591
D  Convex Functions and Duality ............................... 603
E  Second-Order Optimality .................................... 606
F  Prox-Regularity ............................................ 609
G  Subgradient Proto-Differentiability ........................ 618
H  Subgradient Coderivatives and Perturbation ................. 622
I  Further Derivative Properties .............................. 625
J  Parabolic Subderivatives ................................... 633
Commentary .................................................... 638

Chapter 14. Measurability ..................................... 642
A  Measurable Mappings and Selections ......................... 643
B  Preservation of Measurability .............................. 651
C  Limit Operations ........................................... 655
D  Normal Integrands .......................................... 660
E  Operations on Integrands ................................... 669
F  Integral Functionals ....................................... 675
Commentary .................................................... 679

References .................................................... 684
Index of Statements ........................................... 710
Index of Notation ............................................. 725
Index of Topics ............................................... 726


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:38 2019. Размер: 14,968 bytes.
Посещение N 1456 c 22.10.2013