Preface ......................................................... v
1 Interactions of Charged Particles and Photons .............. 1
1.1 Passage of Massive Charged Particles Through Matter ........ 2
1.1.1 Collision-Loss Processes of Massive Charged
Particles ........................................... 3
1.1.1.1 Maximum Transferable Energy to Atomic
Electrons .................................. 5
1.1.1.2 Bragg Curve and Peak ....................... 6
1.1.1.3 Energy-Loss Minimum, Density Effect and
Relativistic Rise .......................... 8
1.1.1.4 Restricted Energy-Loss and Fermi Plateau .. 11
1.1.1.5 Energy-Loss Fluctuations and the Most
Probable Energy-Loss ...................... 13
1.1.1.6 Improved Energy-Loss Distribution and
Effective Most Probable Energy-Loss ....... 18
1.1.1.7 Nuclear Energy-Loss of Massive Particles .. 22
1.2 Collision and Radiation Energy-Losses of Electrons and
Positrons ................................................. 27
1.2.1 Collision Losses and the Most Probable
Energy-Loss ........................................ 28
1.2.2 Radiation Energy-Losses ............................ 30
1.3 Nuclear and Non-Ionizing Energy Losses of Electrons ....... 32
1.3.1 Scattering Cross Section of Electrons on Nuclei .... 35
1.3.1.1 Interpolated Expression for Mott ......... 38
1.3.1.2 Screened Coulomb Potentials ............... 38
1.3.1.3 Finite Nuclear Size ....................... 41
1.3.1.4 Finite Rest Mass of Target Nucleus ........ 43
1.3.2 Nuclear Stopping Power of Electrons ................ 47
1.3.3 Non-Ionizing Energy-Loss of Electrons .............. 48
1.4 Interactions of Photons with Matter ....................... 52
1.4.1 Photoelectric Effect ............................... 53
1.4.2 Compton Effect ..................................... 54
1.4.3 Pair Production .................................... 57
1.4.3.1 Pair Production in Nuclear and Atomic
Electron Fields ........................... 58
1.4.4 Absorption of Photons in Silicon ................... 60
2 Physics and Properties of Silicon Semiconductor ........... 65
2.1 Structure and Growth of Silicon Crystals .................. 66
2.1.1 Imperfections and Defects in Crystals .............. 69
2.2 Energy Band Structure and Energy Gap ...................... 71
2.2.1 Energy Gap Dependence on Temperature and Pressure
in Silicon ......................................... 73
2.2.2 Effective Mass ..................................... 74
2.2.2.1 Conductivity and Density-of-States
Effective Masses in Silicon ............... 77
2.3 Carrier Concentration and Fermi Level ..................... 83
2.3.1 Effective Density-of-States ........................ 83
2.3.1.1 Degenerate and Non-Degenerate
Semiconductors ............................ 90
2.3.1.2 Intrinsic Fermi-Level and Concentration
of Carriers ............................... 92
2.3.2 Donors and Acceptors ............................... 96
2.3.2.1 Extrinsic Semiconductors and Fermi
Level ..................................... 97
2.3.2.2 Compensated Semiconductors ............... 104
2.3.2.3 Maximum Temperature of Operation of
Extrinsic Semiconductors ................. 107
2.3.2.4 Quasi-Fermi Levels ....................... 108
2.3.3 Largely Doped and Degenerate Semiconductors ....... 110
2.3.3.1 Bandgap Narrowing in Heavily Doped
Semiconductors ........................... 110
2.3.3.2 Reduction of the Impurity Ionization-
Energy in Heavily Doped Semiconductors ... 114
3 Transport Phenomena in Semiconductors .................... 117
3.1 Thermal and Drift Motion in Semiconductors ............... 118
3.1.1 Drift and Mobility ................................ 118
3.1.1.1 Mobility in Silicon at High Electric
Fields or Up to Large Doping
Concentrations ........................... 122
3.1.2 Resistivity ....................................... 128
3.2 Diffusion Mechanism ...................................... 131
3.2.1 Einstein's Relationship ........................... 133
3.3 Thermal Equilibrium and Excess Carriers in
Semiconductors ........................................... 135
3.3.1 Generation, Recombination Processes, and Carrier
Lifetimes ......................................... 137
3.3.1.1 Bulk Processes in Direct Semiconductors .. 137
3.3.1.2 Bulk Processes in Indirect
Semiconductors ........................... 140
3.3.1.3 Surface Recombination .................... 145
3.3.1.4 Lifetime of Minority Carriers in
Silicon .................................. 145
3.4 The Continuity Equations ................................. 146
3.4.1 The Dielectric Relaxation Time and Debye Length ... 150
3.4.2 Ambipolar Transport ............................... 151
3.4.3 Charge Migration and Field-Free Regions ........... 154
3.4.3.1 Carrier Diffusion in Silicon Radiation
Detectors ................................ 157
3.4.3.2 Measurement of Charge Migration in
Silicon Radiation Detectors .............. 163
3.5 Hall Effect in Silicon Semiconductors .................... 169
4 Properties of the p-n Junctions of Silicon Radiation
Devices .................................................. 177
4.1 Standard Planar Float-Zone and MESA Silicon Detectors
Technologies ............................................. 178
4.1.1 Standard Planar Float-Zone Technology ............. 178
4.1.2 MESA Technology ................................... 179
4.2 Basic Principles of Junction Operation ................... 182
4.2.1 Unpolarized p — n Junction ........................ 184
4.2.2 Polarized p — n Junction .......................... 187
4.2.3 Capacitance ....................................... 189
4.2.4 Charge Collection Measurements .................... 191
4.2.5 Charge Transport in Silicon Diodes ................ 192
4.2.6 Leakage or Reverse Current ........................ 202
4.3 Charge Collection Efficiency and Hecht Equation .......... 204
4.4 Junction Characteristics Down to Cryogenic Temperature ... 208
4.4.1 Diode Structure and Rectification Down to
Cryogenic Temperature ............................. 210
4.4.1.1 Rectification Property at Room
Temperature .............................. 210
4.4.1.2 I — V Characteristics Down to Cryogenic
Temperature .............................. 212
4.4.2 Complex Impedance of Junctions and Cryogenic
Temperatures ...................................... 215
5 Charged Particle Detectors ............................... 223
5.1 Spectroscopic Characteristics of Standard Planar
Detectors ................................................ 223
5.1.1 Noise Characterization of Silicon Detectors ....... 227
5.1.2 Energy Resolution of Standard Planar Detectors .... 229
5.1.3 Energy Resolution and the Fano Factor ............. 231
5.2 Microstrip Detectors ..................................... 233
5.3 Pixel Detector Device .................................... 239
5.3.1 The PILATUS Detecting Device ...................... 240
5.3.2 The XPAD Detecting Device ......................... 241
5.3.3 The DEPFET Detecting Device ....................... 241
5.3.4 The Medipix-Type Detecting Device ................. 242
5.3.4.1 Charge Sharing ........................... 244
5.3.4.2 Pattern Recognition ...................... 249
5.3.4.3 Mip's .................................... 252
5.3.4.4 Protons, a-Particles and Heavier Ions .... 253
5.3.4.5 Neutrons ................................. 255
5.3.5 Timepix ........................................... 258
6 Photon Detectors and Dosimetric Devices .................. 261
6.1 Photodiodes, Avalanche Photodiodes and Silicon
Photomultipliers ......................................... 261
6.1.1 Photodiodes ....................................... 261
6.1.1.1 Photodiode and Electrical Model .......... 263
6.1.2 Avalanche Photodiodes ............................. 268
6.1.3 Geiger-mode Avalanche Photodiodes and Silicon
Photomultiplier Detectors ......................... 271
6.1.4 Electrical Characteristics of SiPM Devices as
Function of Temperature and Frequency ............. 279
6.1.4.1 Capacitance Response ..................... 280
6.1.4.2 Current-Voltage Characteristics .......... 284
6.1.4.3 Electrical Model for SiPMs ............... 284
6.2 Photovoltaic and Solar Cells ............................. 290
6.3 Neutron Detection with Silicon Detectors ................. 295
6.3.1 Principles of Neutron Detection with Silicon
Detectors ......................................... 296
6.3.1.1 Signal in Silicon Detectors for Thermal
Neutrons ................................. 298
6.3.1.2 Signals in Silicon Detectors by Fast
Neutrons ................................. 306
6.3.2 3-D Neutron Detectors ............................. 309
7 Examples of Applications of Silicon Devices in Physics
and Medical Physics ...................................... 311
7.1 Silicon Calorimetry ...................................... 312
7.1.1 Silicon Electromagnetic Calorimeters .............. 313
7.1.2 Luminosity Monitors ............................... 314
7.1.3 Silicon Hadronic Calorimeters ..................... 318
7.2 Silicon Vertex and Tracker Detectors ..................... 320
7.3 Applications in Space and Balloon Experiments ............ 329
7.3.1 Balloon Experiments ............................... 330
7.3.1.1 ATIC ..................................... 330
7.3.1.2 CREAM .................................... 331
7.3.1.3 CAPRICE .................................. 332
7.3.1.4 TIGRE, MEGA .............................. 333
7.3.2 Satellite Experiments ............................. 334
7.3.2.1 AGILE .................................... 334
7.3.2.2 Fermi-LAT ................................ 335
7.3.2.3 NINA ..................................... 336
7.3.2.4 PAMELA ................................... 337
7.3.3 Experiments on Board of the International Space
Station ........................................... 339
7.3.3.1 SilEye Detectors ......................... 339
7.3.3.2 The Alpha Magnetic Spectrometer (AMS) .... 340
7.4 Application of Silicon Devices in Medical Physics ........ 344
7.4.1 Application of Silicon Devices in SPECT and PET ... 344
7.4.1.1 Single Photon Emission Computed
Tomography (SPECT) ....................... 344
7.4.1.2 Positron Emission Tomography (PET) ....... 351
7.4.1.3 Example of Silicon Microstrip Detectors
Used in Scanners ......................... 354
7.4.1.4 Example of Silicon Pad Detectors Used
in Scanners .............................. 356
7.4.1.5 Example of Silicon Pixel Detectors Used
in Scanners .............................. 356
7.4.1.6 Example of Silicon Photomultipliers
Detectors Used in Scanners ............... 358
7.4.2 X-Ray Medical Imaging ............................. 361
7.4.2.1 The Contrast ............................. 362
7.4.2.2 The Modulation Transfer Function ......... 363
7.4.2.3 The Detective Quantum Efficiency ......... 364
Appendix A General Properties and Physical Constants ......... 367
A.1 Physical Constants .................................. 368
Bibliography .................................................. 373
Index ........................................................ 401
|