Faghri A. Advanced heat and mass transfer (Columbia, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFaghri A. Advanced heat and mass transfer / A.Faghri, Y.Zhang, J.R.Howell. - Columbia: Global Digital Press, 2010. - xxii, 934 p. - Incl. bibl. ref. - Ind.: p.925-934. - ISBN 978-0-9842760-0-4
 

Оглавление / Contents
 
Preface ....................................................... xii
Nomenclature ................................................... xv

Chapter 1  Introduction ......................................... 1
1.1  Introduction ............................................... 1
1.2  Physical Concepts .......................................... 3
     1.2.1  Sensible Heat ....................................... 3
     1.2.2  Latent Heat ......................................... 5
     1.2.3  Phase Change ........................................ 7
1.3  Molecular Level Presentation ............................... 9
     1.3.1  Introduction ........................................ 9
     1.3.2  Kinetic Theory ..................................... 10
     1.3.3  Intermolecular Forces and Boltzmann Transport
            Equation ........................................... 16
     1.3.4  Cohesion and Adhesion .............................. 20
     1.3.5  Enthalpy and Energy ................................ 21
1.4  Fundamentals of Momentum, Heat and Mass Transfer .......... 23
     1.4.1  Continuum Flow Limitations ......................... 23
     1.4.2  Momentum, Heat and Mass Transfer ................... 25
     1.4.3  Microscale and Nanoscale Transport Phenomena ....... 43
     1.4.4  Dimensional Analysis ............................... 48
     1.4.5  Scaling ............................................ 59
1.5  Modern Applications of Heat and Mass Transfer ............. 61
     1.5.1  Energy Systems ..................................... 62
     1.5.2  Biological and Biomedical Systems .................. 66
     1.5.3  Security ........................................... 69
     1.5.4  Information Technology ............................. 71
     1.5.5  Nanotechnology ..................................... 74
     References ................................................ 78
     Problems .................................................. 83

Chapter 2  Generalized Governing Equations ..................... 89
2.1  Introduction .............................................. 89
2.2  Macroscopic (Integral) Local Instance Formulation ......... 91
     2.2.1  Conservation of Mass ............................... 93
     2.2.2  Momentum Equation .................................. 94
     2.2.3  Energy Equation .................................... 95
     2.2.4  The Second Law of Thermodynamics ................... 99
     2.2.5  Species ............................................ 99
2.3  Microscopic (Differential) Local Instance Formulation .... 101
     2.3.1  Conservation of Mass .............................. 102
     2.3.2  Momentum Equation ................................. 103
     2.3.3  Energy Equation ................................... 105
     2.3.4  The Second Law of Thermodynamics .................. 110
     2.3.5  Species ........................................... 111
     2.3.6  Classification of PDEs and Boundary Conditions .... 121
     2.3.7  Jump and Boundary Conditions at the Interfaces .... 124
     2.3.8  Rarefied Vapor Self-Diffusion Model ............... 137
     2.3.9  An Extension: Combustion .......................... 138
2.4  Volume Averaged Models ................................... 145
     2.4.1  Overview of Averaging Approaches .................. 145
     2.4.2  Volume-Averaged Multi-Fluid Models ................ 150
     2.4.3  Volume-Averaged Homogeneous Model ................. 161
     2.4.4  An Extension: Porous Media ........................ 167
2.5  Fundamentals of Turbulence ............................... 181
     2.5.1  Description of Turbulence ......................... 181
     2.5.2  Time-Averaged Governing Equations ................. 184
     References ............................................... 190
     Problems ................................................. 192

Chapter 3  Heat Conduction .................................... 209
3.1  Introduction ............................................. 209
3.2  Steady State Heat Conduction ............................. 212
     3.2.1  One Dimensional Heat Conduction ................... 212
     3.2.2  Multidimensional Heat Conduction .................. 227
3.3  Unsteady State Heat Conduction ........................... 238
     3.3.1  Lumped Analysis ................................... 238
     3.3.2  One Dimensional Transient Heat Conduction ......... 240
     3.3.3  Multidimensional Transient Heat Conduction ........ 261
3.4  Numerical Simulation of Heat Conduction Problems ......... 264
     3.4.1  One-Dimensional Steady-State Conduction ........... 265
     3.4.2  One-Dimensional Transient Conduction .............. 270
     3.4.3  Multidimensional Transient Conduction ............. 273
3.5  Melting and Solidification ............................... 276
     3.5.1  Introduction ...................................... 276
     3.5.2  Exact Solution .................................... 281
     3.5.3  Integral Approximate Solution ..................... 289
     3.5.4  Numerical Simulation .............................. 304
3.6  Microscale Heat Conduction ............................... 314
     3.6.1  Extensions of Classic Model ....................... 314
     3.6.2  Two-Step Model .................................... 316
     3.6.3  Microscale Phase Change ........................... 319
     References ............................................... 323
     Problems ................................................. 325

Chapter 4 External Convective Heat and Mass Transfer .......... 339
4.1  Introduction ............................................. 339
4.2  Concepts of the Boundary Layer Theory .................... 341
4.3  Boundary Layer Approximation ............................. 343
4.4  Governing Equations for Boundary Layer Approximation ..... 344
4.5  Laminar Boundary Layer Solutions for Momentum, Heat,
     and Mass Transfer ........................................ 350
4.6  Similarity Solutions ..................................... 351
     4.6.1  Uncoupled Mass, Momentum, and Heat Transfer
            Problems .......................................... 352
     4.6.2  Coupled Mass, Momentum, and Heat Transfer
            Problems .......................................... 362
4.7  Integral Methods ......................................... 369
4.8  Computational Methodologies for Forced Convection ........ 375
     4.8.1  One-Dimensional Steady-State Convection and
            Diffusion ......................................... 376
     4.8.2  Multidimensional Convection and Diffusion
            Problems .......................................... 385
     4.8.3  Numerical Solution of Flow Field .................. 388
     4.8.4  Numerical Simulation of Interfaces and Free
            Surfaces .......................................... 395
4.9  Application of Computational Methods ..................... 400
4.10 Analogies and Differences in Different Transport
     Phenomena ................................................ 406
4.11 Turbulence ............................................... 412
     4.11.1 Turbulent Boundary Layer Equations ................ 412
     4.11.2 Algebraic Models for Eddy Diffusivity ............. 414
     4.11.3 K-ε Model ......................................... 422
     4.11.4 Momentum and Heat Transfer for Turbulent Flow
            over a Flat Plate ................................. 424
     References ............................................... 430
     Problems ................................................. 433

Chapter 5  Internal Convective Heat Transfer .................. 438
5.1  Introduction ............................................. 438
5.2  Basic Definitions, Terminology and Governing Equations ... 439
5.3  Hydrodynamically and Thermally Fully Developed Laminar
     Flow ..................................................... 447
5.4  Hydrodynamically Fully Developed and Thermally
     Developing Laminar Flow .................................. 453
     5.4.1  Constant Wall Temperature ......................... 454
     5.4.2  Constant Heat Flux at the Wall .................... 456
5.5  Hydrodynamically Fully Developed Flow with Coupled
     Thermal and Concentration Entry Effects .................. 458
     5.5.1  Sublimation inside an Adiabatic Tube .............. 458
     5.5.2  Sublimation inside a Tube Subjected to External
            Heating ........................................... 463
5.6  Developing Flow, Thermal and Concentration Effects ....... 470
5.7  Full Numerical Solutions ................................. 475
5.8  Forced Convection in Microchannels ....................... 482
     5.8.1  Introduction ...................................... 482
     5.8.2  Fully Developed Laminar Flow and Temperature
            Profile ........................................... 485
     5.8.3  Fully Developed Flow with Developing Temperature
            Profile ........................................... 493
5.9  Turbulence ............................................... 499
     5.9.1  Time-Averaged Governing Equations ................. 499
     5.9.2  Velocity Profile and Friction Coefficient for
            Fully Developed Flow .............................. 500
     5.9.3  Heat Transfer in Fully Developed Turbulent Flow ... 503
     References ............................................... 509
     Problems ................................................. 511

Chapter 6  Natural Convection ................................. 515
6.1  Introduction ............................................. 515
6.2  Governing Equations for Natural Convection ............... 517
     6.2.1  Generalized Governing Equations ................... 517
     6.2.2  External Natural Convection from Heated Vertical
            Plate ............................................. 519
     6.2.3  Dimensionless Parameters .......................... 520
6.3  Scale Analysis ........................................... 521
     6.3.1  High Prandtl Number Fluids (Pr >> 1) .............. 523
     6.3.2  Low Prandtl Number Fluids (Pr << 1) ............... 525
6.4  External Natural Convection .............................. 526
     6.4.1  Similarity Solution for Natural Convection on
            a Vertical Surface ................................ 526
     6.4.2  Integral Solution for Laminar and Turbulent
            Natural Convection ................................ 533
     6.4.3  Natural Convection over Inclined and Horizontal
            Surfaces .......................................... 540
     6.4.4  Natural Convection over Cylinders and Spheres ..... 543
     6.4.5  Free Boundary Flow ................................ 551
6.5  Natural Convection in Enclosures ......................... 555
     6.5.1  Scale Analysis .................................... 556
     6.5.2  Rectangular Enclosures ............................ 560
     6.5.3  Annular Space between Concentric Cylinders and
            Spheres ........................................... 569
6.6  Natural Convection in Melting and Solidification ......... 572
     6.6.1  Solidification around Horizontal Cylinder ......... 572
     6.6.2  Melting in a Rectangular Enclosure Heated from
            the Side .......................................... 575
6.7  Instability Analysis of Natural Convection ............... 580
     References ............................................... 583
     Problems ................................................. 587

Chapter 7  Condensation and Evaporation ....................... 590
7.1  Introduction ............................................. 590
7.2  Dropwise Condensation .................................... 599
     7.2.1  Surface Tension and Capillary Pressure ............ 599
     7.2.2  Thermal Resistances in the Condensation
            Processes ......................................... 603
     7.2.3  Heat Transfer Coefficient for Dropwise
            Condensation ...................................... 607
7.3  Filmwise Condensation .................................... 609
     7.3.1  Regimes of Filmwise Condensation .................. 609
     7.3.2  Modeling for Laminar Film Condensation of
            a Binary Vapor Mixture ............................ 610
     7.3.3  Filmwise Condensation in a Stagnant Pure Vapor
            Reservoir ......................................... 615
     7.3.4  Effects of Vapor Motion ........................... 623
     7.3.5  Turbulent Film Condensation ....................... 629
     7.3.6  Other Filmwise Condensation Configurations ........ 634
     7.3.7  Effects of Noncondensable Gas ..................... 636
7.4  Falling Film Evaporation on a Heated Wall and Spray
     Cooling .................................................. 642
     7.4.1  Classical Nusselt Evaporation ..................... 642
     7.4.2  Laminar Falling Film with Surface Waves ........... 646
     7.4.3  Turbulent Falling Film ............................ 649
     7.4.4  Surface Spray Cooling ............................. 649
     References ............................................... 652
     Problems ................................................. 655

Chapter 8  Boiling ............................................ 665
8.1  Introduction ............................................. 665
8.2  Pool Boiling Regimes ..................................... 666
8.3  Nucleate Boiling ......................................... 669
     8.3.1  Nucleation and Inception .......................... 670
     8.3.2  Bubble Dynamics ................................... 675
     8.3.3  Bubble Detachment ................................. 685
     8.3.4  Nucleate Site Density ............................. 690
     8.3.5  Bubble Growth and Merger .......................... 691
     8.3.6  Heat Transfer in Nucleate Boiling ................. 695
8.4  Critical Heat Flux ....................................... 701
8.5  Transition Boiling and Minimum Heat Flux ................. 705
     8.5.1  Transition Boiling ................................ 705
     8.5.2  Minimum Heat Flux ................................. 707
8.6  Film Boiling ............................................. 709
     8.6.1  Film Boiling Analysis ............................. 709
     8.6.2  Direct Numerical Simulation of Film Boiling ....... 719
     8.6.3  Leidenfrost Phenomena ............................. 722
     References ............................................... 730
     Problems ................................................. 735

Chapter 9  Fundamentals of Thermal Radiation .................. 739
9.1  Electromagnetic Waves and Thermal Radiation .............. 739
9.2  The Blackbody as the Ideal Radiator ...................... 741
     9.2.1  The Planck Distribution and its Consequences ...... 742
     9.2.2  The Blackbody Fraction ............................ 748
9.3  Properties of Real Surfaces: Definitions, Measurements
     and Prediction ........................................... 750
     9.3.1  Opaque Surface Property Definitions ............... 750
     9.3.2  EM Theory Predictions of Properties ............... 759
9.4  Application and Exploitation of Radiative Properties ..... 766
     9.4.1  Spacecraft Thermal Design ......................... 766
     9.4.2  Solar Thermal Energy Collectors ................... 771
     9.4.3  Other Property Choices for Radiation/Surface
            Interactions ...................................... 777
9.5  High-energy Radiation-Surface Interactions ............... 778
     9.5.1  Nanoscale Surface Modification for Tailoring
            Properties ........................................ 780
     9.5.2  Macroscale Laser-Surface Interactions ............. 781
9.6  Light Pipes and Fiber Optics ............................. 783
9.7  Infrared Sensing, Cameras and Photography ................ 785
9.8  Other Contemporary Applications and Research ............. 786
     References ............................................... 787
     Problems ................................................. 788

CHAPTER 10 Heat Transfer by Radiation ......................... 794
10.1 Radiative Transfer through Transparent Media ............. 794
     10.1.1 Transfer between Two Areas ........................ 794
     10.1.2 Diffuse Surfaces: The Configuration Factor ........ 796
     10.1.3 Configuration Factor Algebra ...................... 800
10.2 The Enclosure; The Net Radiation Method for Diffuse
     Surfaces ................................................. 804
     10.2.1 Radiosity, Irradiation, and Net Energy Transfer ... 805
     10.2.2 Gray Surfaces ..................................... 807
     10.2.3 Nongray Surfaces .................................. 814
     10.2.4 Surfaces with Varying Temperature, Radiative
            Flux, or Properties ............................... 817
10.3 Multimode Heat Transfer with Radiation ................... 821
     10.3.1 Numerical Methods ................................. 824
     10.3.2 Conduction Dominated Problems ..................... 826
     10.3.3 Radiation Dominated Problems ...................... 826
     10.3.4 Problems with Both Modes Significant .............. 827
10.4 Inverse Problems ......................................... 828
     10.4.1 An Inverse Design Problem ......................... 830
     10.4.2 Regularization .................................... 835
     10.4.3 Unresolved Problems in Inverse Cases .............. 837
10.5 The Effect of Participating Media ........................ 838
     10.5.1 Absorption, Emission and Scattering from
            a Medium .......................................... 838
     10.5.2 Properties of Participating Media ................. 839
     10.5.3 The Radiative Transfer Equation ................... 844
     10.5.4 Some Limiting Solutions for Radiative Transfer .... 848
10.6 Applications of Radiative Transfer ....................... 862
     10.6.1 Radiation Measurement and Sensing: IR Cameras,
            Optical Pyrometers and Remote Sensing ............. 862
     10.6.2 Atmospheric Phenomena Caused by Scattering ........ 863
     10.6.3  Pollution, Greenhouse Gases and the Greenhouse
             Effect, Atmospheric Radiation and the Global
             Energy Balance ................................... 865
     References ............................................... 866
     Problems ................................................. 868

List of Appendices ............................................ 875
   Appendix A Constants, Units and Conversion Factors ......... 876
   Appendix В Transport Properties of Solids .................. 880
   Appendix С Transport Properties of Gases and Liquids
              at Atmospheric Pressure ......................... 888
   Appendix D Transport Properties for Phase Change ........... 895
   Appendix E Mass Transfer Properties ........................ 899
   Appendix F Configuration Factors and Surface Properties 
              for Radiation ................................... 911
   Appendix G Mathematical Relations .......................... 916
Index ......................................................... 925


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:36 2019. Размер: 23,200 bytes.
Посещение N 1750 c 22.10.2013