Editors's Preface .......................................... ХХХIII
Foreword ..................................................... XXXV
Henning Hopf
Foreword ..................................................... XXXV
Paul T. Anastas
List of Contributors ........................................ XXXIX
Volume 1
Part I Background and Outline - Principles and Fundamentals
1 Biorefinery Systems - An Overview .......................... 3
Birgit Kamm, Michael Kamm, Patrick R. Cruber, and Stefan
Kromus
1.1 Introduction ............................................... 3
1.2 Historical Outline ......................................... 4
1.2.1 Historical Technological Outline and Industrial
Resources ........................................... 4
1.2.2 The Beginning - A Digest ............................ 5
1.2.2.1 Sugar Production ........................... 5
1.2.2.2 Starch Hydrolysis .......................... 5
1.2.2.3 Wood Saccharification ...................... 5
1.2.2.4 Furfural ................................... 6
1.2.2.5 Cellulose and Pulp ......................... 6
1.2.2.6 Levulinic Acid ............................. 6
1.2.2.7 Lipids ..................................... 7
1.2.2.8 Vanillin from Lignin ....................... 7
1.2.2.9 Lactic Acid ................................ 7
1.2.3 The Origins of Integrated Biobased Production ....... 8
1.3 Situation ................................................. 11
1.3.1 Some Current Aspects' of Biorefinery Research and
Development ........................................ 11
1.3.2 Raw Material Biomass ............................... 12
1.3.3 National Vision and Goals and Plan for Biomass
Technology in the United States .................... 14
1.3.4 Vision and Goals and Plan for Biomass Technology
in the European Union and Germany .................. 15
1.4 Principles of Biorefineries ............................... 16
1.4.1 Fundamentals ....................................... 16
1.4.2 Definition of the Term "Biorefinery" ............... 19
1.4.3 The Role of Biotechnology .......................... 20
1.4.3.1 Guidelines of Fermentation Section
within Glucose-product Family Tree ........ 21
1.4.4 Building Blocks, Chemicals and Potential
Screening .......................................... 22
1.5 Biorefinery Systems and Design ............................ 23
1.5.1 Introduction ....................................... 23
1.5.2 Lignocellulosic Feedstock Biorefinery .............. 24
1.5.3 Whole-crop Biorefinery ............................. 26
1.5.4 Green Biorefinery .................................. 29
1.5.5 Two-platform Concept and Syngas .................... 31
1.6 Outlook and Perspectives .................................. 32
References ................................................ 33
2 Biomass Refining Global Impact - The Biobased Economy of
the 21st Century .......................................... 41
Bruce E. Dale and Seungdo Kim
2.1 Introduction .............................................. 41
2.2 Historical Outline ........................................ 42
2.2.1 Background and Development of the Fossil
Carbon-processing Industries ....................... 42
2.2.2 The Existing Biobased Economy: Renewable Carbon .... 43
2.2.3 Toward a Much Larger Biobased Economy .............. 44
2.3 Supplying the Biorefinery ................................. 45
2.3.1 What Raw Materials do Biorefineries Require and
What Products Can They Make? ....................... 45
2.3.2 Comparing Biomass Feedstock Costs With Petroleum
Costs .............................................. 48
2.3.3 How Much Biomass Feedstock Can be Provided at
What Cost? ......................................... 50
2.4 How Will Biorefineries Develop Technologically? ........... 53
2.4.1 Product Yield: The Dominant Technoeconomic Factor .. 53
2.4.2 Product Diversification: Using the Whole Barrel
of Biomass ......................................... 54
2.4.3 Process Development and a Technical Prerequisite
for Cellulosic Biorefineries ....................... 55
2.5 Sustainability of Integrated Biorefining Systems .......... 56
2.5.1 Integrated Biorefining Systems: "All Biomass is
Local" ............................................. 56
2.5.2 Agricultural/Forestry Ecosystem Modeling: New
Tools for an Age of Sustainability ................. 57
2.5.3 Analyzing the Sustainability of Integrated
Biorefining Systems: Some Results .................. 60
2.6 Conclusions ............................................... 64
Acknowledgements .......................................... 65
References ................................................ 65
3 Development of Biorefineries - Technical and Economic
Considerations ............................................ 67
Bill Dean, Tim Dodge, Fernando Valle, and Copal Chotani
3.1 Introduction .............................................. 67
3.2 Overview The Biorefinery Model ............................ 68
3.3 Feedstock and Conversion to Fermentable Sugar ............. 68
3.3.1 Sucrose ............................................ 70
3.3.2 Starch ............................................. 70
3.3.3 Cellulose .......................................... 71
3.4 Technical Challenges ...................................... 74
3.4.1 Cellulase Enzymes .................................. 74
3.4.1.1 Improved Cellulase Production Economics ... 74
3.4.1.2 Improved Cellulase Enzyme Performance ..... 76
3.4.2 Fermentation Organisms ............................. 77
3.4.2.1 Biomass Hydrolyzate as Fermentable
Carbon Source ............................. 78
3.4.2.2 Production Process as a Whole ............. 79
3.4.2.3 Emerging Solutions ........................ 80
3.5 Conclusions ............................................... 81
Acknowledgments ........................................... 82
References .................................................. 82
4 Biorefineries for the Chemical Industry -A Dutch Point
of View ................................................... 85
Ed de Jong, René van Ree Reo, Robert van Tuil, and
Wolter Elbersen
4.1 Introduction .............................................. 85
4.2 Historical Outline - The Chemical Industry: Current
Situation and Perspectives ................................ 86
4.2.1 Overview of Products and Markets ................... 86
4.2.2 Technological Pathways ............................. 87
4.2.3 Biomass-based Industrial Products .................. 87
4.2.3.1 Carbohydrates ............................. 89
4.2.3.2 Fatty Acids ............................... 90
4.2.3.3 Other ..................................... 91
4.2.4 International Perspectives ......................... 92
4.2.4.1 Production ................................ 92
4.2.4.2 Integration ............................... 92
4.2.4.3 Use and Re-use ............................ 93
4.3 Biomass: Technology and Sustainability .................... 93
4.3.1 Transition to a Bio-based Industry: Sectoral
Integration in the Netherlands ..................... 93
4.3.2 Can Sustainability Drive Technology? ............... 96
4.4 The Chemical Industry. Biomass Opportunities -
Biorefineries ............................................. 97
4.4.1 Biomass Opportunities .............................. 97
4.4.2 Biorefinery Concept ................................ 98
4.4.3 Biomass Availability .............................. 100
4.4.4 Primary Refinery .................................. 101
4.4.5 Secondary Thermochemical Refinery ................. 102
4.4.6 Secondary Biochemical Refinery - Fermentative
Processes ......................................... 104
4.4.6.1 Feedstocks ............................... 105
4.4.6.2 Product Spectrum ......................... 105
4.4.6.3 Side Streams and Recycling ............... 106
4.5 Conclusions, Outlook, and Perspectives ................... 106
4.5.1 Biomass - Sustainability .......................... 106
4.5.2 Biomass Refining and Pretreatment ................. 107
4.5.3 Conversion Technology ............................. 108
4.5.4 Chemicals and Materials Design .................... 108
4.5.5 Dutch Energy Research Strategy ("EOS") ............ 109
References ............................................... 109
Part II Biorefinery Systems
Lignocellulose Feedstock Biorefinery
5 The Lignocellulosic Biorefinery - A Strategy for
Returning to a Sustainable Source of Fuels and
Industrial Organic Chemicals ............................. 115
L. Davis Clements and Donald L. Van Dyne
5.1 The Situation ............................................ 115
5.2 The Strategy ............................................. 115
5.2.1 A Strategy Within a Strategy ...................... 116
5.2.2 Environmental Benefits ............................ 117
5.2.3 The Business Structure ............................ 117
5.2.4 Cost Estimates .................................... 118
5.3 Comparison of Petroleum and Biomass Chemistry ............ 118
5.3.1 Petroleum Resources ............................... 118
5.3.2 Biomass Resources ................................. 119
5.3.3 Saccharides and Polysaccharides ................... 121
5.3.4 Lignin ............................................ 121
5.3.5 Triacylglycerides (or Triglycerides) .............. 121
5.3.6 Proteins .......................................... 122
5.4 The Chemistry of the Lignocellulosic Biorefinery ......... 122
5.5 Examples of Integrated Biorefinery Applications .......... 125
5.5.1 Production of Ethanol and Furfural from
Lignocellulosic Feedstocks ........................ 125
5.5.2 Management of Municipal Solid Waste ............... 125
5.5.3 Coupling MSW Management, Ethanol, and Biodiesel ... 126
5.6 Summary .................................................. 127
References ............................................... 127
6 Lignocellulosic Feedstock Biorefinery: History and Plant
Development for Biomass Hydrolysis ....................... 129
Raphael Katzen and Daniel J. Schell
6.1 Introduction ............................................. 129
6.2 Hydrolysis of Biomass Materials .......................... 129
6.2.1 Acid Conversion ................................... 129
6.2.2 Enzymatic Conversion .............................. 130
6.3 Acid Hydrolysis Processes ................................ 130
6.3.1 Early Efforts to Produce Ethanol .................. 130
6.3.2 Other Products .................................... 133
6.4 Enzymatic Hydrolysis Process ............................. 134
6.4.1 Early History ..................................... 134
6.4.2 Enzyme-Based Plant Development .................... 134
6.4.3 Technology Development ............................ 135
6.5 Conclusion ............................................... 136
References ............................................... 136
7 The Biotine Process - Production of Levulinic Acid,
Furfural, and Formic Acid from Lignocellulosic
Feedstocks ............................................... 139
Daniel J. Hayes, Steve Fitzpatrick, Michael H.B. Hayes,
and Julian R.H. Ross
7.1 Introduction ............................................. 139
7.2 Lignocellulosic Fractionation ............................ 139
7.2.1 Acid Hydrolysis bf Polysaccharides ................ 141
7.2.2 Production of Levulinic Acid, Formic Acid and
Furfural .......................................... 142
7.3 The Biofine Process ...................................... 344
7.3.1 Yields and Efficiencies of the Biofine Process .... 145
7.3.2 Advantages over Conventional Lignocellulosic
Technology ........................................ 146
7.3.3 Products of The Biofine Process ................... 147
7.3.3.1 Diphenolic Acid .......................... 148
7.3.3.2 Succinic Acid and Derivatives ............ 149
7.3.3.3 Delta-aminolevulinic Acid ................ 149
7.3.3.4 Methyltetrahydrofuran .................... 150
7.3.3.5 Ethyl Levulinate ......................... 152
7.3.3.6 Formic Acid .............................. 153
7.3.3.7 Furfural ................................. 154
7.3.4 Biofine Char ...................................... 155
7.3.5 Economics of The Biofine Process .................. 158
7.4 Conclusion ............................................... 161
References ............................................... 162
Whole Crop Biorefinery
8 A Whole Crop Biorefinery System: A Closed System for the
Manufacture of Non-food Products from Cereals ............ 165
Apostolis A. Koutinas, Rouhang Wang, Grant M. Campbell,
and Colin Webb
8.1 Intro .................................................... 165
8.2 Biorefineries Based on Wheat ............................. 167
8.2.1 Wheat Structure and Composition ................... 167
8.2.2 Secondary Processing of Wheat Flour Milling
Byproducts ........................................ 169
8.2.3 Advanced Wheat Separation Processes for Food and
Non-food Applications ............................. 173
8.2.3.1 Pearling as an Advanced Cereal
Fractionation Technology ................. 173
8.2.3.2 Air Classification ....................... 176
8.2.4 Biorefinery Based on Novel Dry Fractionation
Processes of Wheat ................................ 176
8.2.4.1 Potential Value-added Byproducts from
Wheat Bran-rich Fractions ................ 178
8.2.4.2 Exploitation of the Pearled Wheat Kernel . 180
8.3 A Biorefinery Based on Oats .............................. 183
8.3.1 Oat Structure and Composition ..................... 183
8.3.2 Layout of a Potential Oat-based Fractionation
Process ........................................... 183
8.3.2.1 Potential Value-added Byproducts from
Oat Bran-rich Fractions .................. 185
8.4 Summary ............................................. 187
References ............................................... 187
Fuel-oriented Biorefineries
9 logen's Demonstration Process for Producing Ethanol
from Cellulosic Biomass .................................. 193
Jeffrey S. Tolan
9.1 Introduction ............................................. 193
9.2 Process Overview ......................................... 193
9.3 Feedstock Selection ...................................... 194
9.3.1 Feedstock Composition ............................. 194
9.3.2 Feedstock Selection ............................... 196
9.3.3 Ethanol from Starch or Sucrose .................... 197
9.3.4 Advantages of Making Ethanol from Cellulosic
Biomass ........................................... 197
9.4 Pretreatment ............................................. 198
9.4.1 Process ........................................... 198
9.4.2 Chemical Reactions ................................ 198
9.4.3 Other Pretreatment Processes ...................... 199
9.5 Cellulase Enzyme Production .............................. 201
9.5.1 Production of Cellulase Enzymes ................... 201
9.5.2 Enzyme Production on the Ethanol Plant Site ....... 202
9.5.3 Commercial Status of Cellulase .................... 202
9.6 Cellulose Hydrolysis ..................................... 202
9.6.1 Process Description ............................... 202
9.6.2 Kinetics of Cellulose Hydrolysis .................. 203
9.6.3 Improvements in Enzymatic Hydrolysis .............. 205
9.7 Lignin Processing ........................................ 205
9.7.1 Process Description ............................... 205
9.7.2 Alternative Uses for Lignin ....................... 206
9.8 Sugar Fermentation and Ethanol Recovery .................. 206
References ............................................... 207
10 Sugar-based Biorefinery - Technology for Integrated
Production of Poly(3-hydroxybutyrate), Sugar, and
Ethanol .................................................. 209
Carlos Eduarde Vaz Rossell, Paulo E. Mantelatto,
Jose A.M. Agnelli, and Jefier Nascimento
10.1 Introduction ............................................. 209
10.2 Sugar Cane Agro Industry in Brazil - Historical Outline .. 209
10.2.1 Sugar and Ethanol Production ...................... 209
10.2.2 The Sugar Cane Agroindustry and the Green Cycle ... 210
10.3 Biodegradable Plastics from Sugar Cane ................... 212
10.3.1 Poly(3-Hydroxybutyric Acid) ....................... 212
10.3.1.1 Biodegradable Plastics and the
Environment .............................. 212
10.3.1.2 General Aspects of Biodegradability ...... 213
10.3.2 Poly(3-Hydroxybutyric Acid) Polymer ............... 214
10.3.2.1 General Characteristics of
Poly(3-hydroxybutyric Acid) and its
Copolymer Poly(3-hydroxybutyric
Acid-co-3-hydroxyvaleric Acid) ........... 214
10.3.2.2 Processing of Poly(Hydroxybutyrates) ..... 215
10.4 Poly(3-Hydroxybutyric Acid) Production Process ........... 217
10.4.1 Sugar Fermentation to Poly(3-Hydroxybutyric
Acid) by Ralstonia eutropha ....................... 217
10.4.2 Downstream Processing for Recovery and
Purification of Intracellular
Poly(3-Hydroxybutyric Acid) ....................... 218
10.4.2.1 Processes for Extraction and
Purification of Poly(hydroxyalkanoates) .. 218
10.4.2.2 Chemical Digestion ....................... 218
10.4.2.3 Enzymatic Digestion ...................... 219
10.4.2.4 Solvent Extraction ....................... 219
10.4.3 Integration of Poly(3-Hydroxybutyric Acid)
Production in a Sugar Mill ........................ 221
10.4.4 Investment and Production Cost of
Poly(3-Hydroxybutyric Acid) in a Sugar Mill ....... 222
10.5 Outlook and Perspectives ................................. 223
References ............................................... 225
Biorefineries Based on Thermochemical Processing
11 Biomass Refineries Based on Hybrid Thermochemical-
Biological Processing - An Overview ...................... 227
Robert C. Brown
11.1 Introduction ............................................. 227
11.2 Historical Outline ....................................... 228
11.2.1 Origins of Biorefineries Based on Syngas
Fermentation ...................................... 228
11.2.2 Origins of Biorefineries Based on Fermentation
of Bio-oils ....................................... 229
11.3 Gasification-Based Systems ............................... 230
11.3.1 Fundamentals of Gasification ...................... 230
11.3.2 Fermentation of Syngas ............................ 233
11.3.2.1 Production of Organic Acids .............. 234
11.3.2.2 Production of Alcohols ................... 235
11.3.2.3 Production of Polyesters ................. 236
11.3.3 Biorefinery Based on Syngas Fermentation .......... 239
11.3.4 Enabling Technology ............................... 240
11.4 Fast Pyrolysis-based Systems ............................. 241
11.4.1 Fundamentals of Fast Pyrolysis .................... 241
11.4.2 Fermentation of Bio-oils .......................... 244
11.4.3 Biorefineries Based on Fast Pyroylsis ............. 246
11.4.4 Enabling Technologies ............................. 248
11.5 Outlook and Perspectives ................................. 249
References ............................................... 250
Green Biorefineries
12 The Green Biorefiner Concept - Fundamentals and
Potential ................................................ 253
Stefan Kromus, Birgit Kamm, Michael Kamm, Paul Fowler,
and Michael Narodoslawsky
12.1 Introduction ............................................. 253
12.2 Historical Outline ....................................... 254
12.2.1 The Inceptions .................................... 254
12.2.2 First Production of Leaf Protein Concentrate ...... 254
12.2.3 First Production of Leaf Dyes ..................... 257
12.3 Green Biorefinery Raw Materials .......................... 258
12.3.1 Raw Materials ..................................... 258
12.3.2 Availability of Grassland Feedstocks for
Large-scale Green Biorefineries ................... 259
12.3.3 Key Components of Green and Forage Grasses ........ 260
12.3.3.1 Structural Cell Wall Constituents ........ 260
12.3.3.2 Cell Contents ............................ 265
12.4 Green Biorefinery Concept ................................ 269
12.4.1 Fundamentals and Status Quo ....................... 269
12.4.2 Wet Fractionation and Primary Refinery ............ 271
12.5 Processes and Products ................................... 273
12.5.1 The Juice Fraction ................................ 273
12.5.1.1 Green Juice .............................. 273
12.5.2 GJ Drinks/Alternative Life ........................ 275
12.5.2.1 Silage Juice ............................. 276
12.5.3 Ingredients and Specialties ....................... 277
12.5.3.1 Proteins/Polysacharides .................. 277
12.5.3.2 Cholesterol Mediation .................... 277
12.5.3.3 Antifeedants ............................. 277
12.5.3.4 Silica ................................... 277
12.5.3.5 Silicon Carbide .......................... 278
12.5.3.6 Filter Aids 278
12.5.3.7 Zeolites ................................. 278
12.5.4 The Press-Cake (Fiber) Fraction ................... 278
12.5.4.1 Fibers ................................... 280
12.5.4.2 Chemicals ................................ 282
12.5.4.3 Residue Utilization ...................... 283
12.6 Green Biorefinery - Economic and Ecological
Aspects ............................................. 283
12.7 Outlook and Perspectives ............................ 285
Acknowledgment ............................................. 285
References ................................................. 285
13 Plant Juice in the Biorefinery - Use of Plant Juice as
Fermentation Medium ...................................... 295
Margrethe Andersen, Pauli Kiel, and Mette Hedegaard
Thomsen
13.1 Introduction ............................................. 295
13.2 Historical Outline ....................................... 295
13.3 Biobased Poly(lactic Acid) ............................... 296
13.3.1 Fermentation Processes ............................ 296
13.3.2 The Green Biorefinery ............................. 296
13.3.3 Lactic Acid Fermentation .......................... 298
13.3.4 Brown Juice as a Fermentation Medium .............. 298
13.4 Materials and Methods .................................... 299
13.4.1 Analytical Methods ................................ 299
13.4.1.1 Sugar Analysis ........................... 299
13.4.1.2 Analysis of Organic Acids ................ 299
13.4.1.3 Analysis of Minerals ..................... 299
13.4.1.4 Analysis of Vitamins ..................... 299
13.4.1.5 Analysis of Amino Acids .................. 299
13.4.1.6 Analysis of Protein ...................... 299
13.4.2 Fed Batch Fermentation of Brown Juice with Lb.
salivarius ВС 1001 ................................ 299
13.4.3 Pilot Scale Continuous Fermentation with Lb.
salivarius ВС 1001 ................................ 300
13.4.4 Study of Potato Juice Quality During Aerobic and
Anaerobic Storage ................................. 300
13.5 Brown Juice .............................................. 300
13.5.1 Chemical Composition .............................. 300
13.5.2 Seasonal Variations ............................... 302
13.5.3 Lactic Acid Fermentation of Brown Juice ........... 305
13.5.4 The Green Crop-drying Industry as a Lactic Acid
Producer .......................................... 306
13.6 Potato Juice ............................................. 309
13.6.1 Potato Juice as Fermentation Medium ............... 309
13.6.2 The Potato Starch Industry as Lactic Acid
Producer .......................................... 310
13.7 Carbohydrate Source ...................................... 311
13.8 Purification of Lactic Acid .............................. 312
13.9 Conclusion and Outlook ................................... 313
Acknowledgments .......................................... 313
References ............................................... 323
Part III Biomass Production and Primary Biorefineries
14 Biomass Commercialization and Agriculture Residue
Collection ............................................... 317
James Hettenhaus
14.1 Introduction ............................................. 317
14.2 Historical Outline ....................................... 318
14.2.1 Case Study: Harlan, Iowa Corn Stover Collection
Project ........................................... 319
14.2.2 Case Study: Bagasse Storage - Dry or Wet? ......... 321
14.2.2.1 Dry Storage .............................. 321
14.2.2.2 Wet Storage .............................. 323
14.3 Biomass Value ............................................ 324
14.3.1 Soil Quality ...................................... 324
14.3.2 Farmer Value ...................................... 325
14.3.3 Processor Value ................................... 327
14.4 Sustainable Removal ...................................... 328
14.4.1 Soil Organic Material ............................. 328
14.4.2 Soil Erosion Control .............................. 329
14.4.3 Cover Crops ....................................... 331
14.5 Innovative Methods for Collection, Storage and
Transport ................................................ 332
14.5.1 Collection ........................................ 332
14.5.1.1 Baling ................................... 333
14.5.1.2 One-pass Collection ...................... 333
14.5.2 Storage ........................................... 334
14.5.2.1 Density .................................. 335
14.5.2.2 Storage Area ............................. 335
14.5.2.3 Storage Loss ............................. 335
14.5.2.4 Foreign Matter and Solubles .............. 337
14.5.2.5 Storage Investment ....................... 337
14.5.3 Transport ......................................... 337
14.5.3.1 Harvest Transport ........................ 338
14.5.3.2 Biorefinery Supply ....................... 338
14.6 Establishing Feedstock Supply ............................ 339
14.6.1 Infrastructure .................................... 340
14.6.1.1 Infrastructure Investment ................ 340
14.6.1.2 Organization Infrastructure .............. 340
14.7 Perspectives and Outlook ................................. 341
References ............................................... 342
15 The Corn Wet Milling and Corn Dry Milling Industry -
A Base for Biorefinery Technology Developments ........... 345
Donald L. Johnson
15.1 Introduction ............................................. 345
15.1.1 Corn - Wet and Dry Milling - Existing
Biorefineries ..................................... 345
15.2 The Corn Refinery ........................................ 346
15.2.1 Wet Mill Refinery ................................. 346
15.2.2 Dry Mill Refinery ................................. 346
15.2.3 Waste Water Treatment ............................. 347
15.3 The Modern Corn Refinery ................................. 348
15.3.1 Background and Definition ......................... 348
15.3.2 Technologies and Products ......................... 348
15.3.3 Refinery Economy .................................. 350
15.3.3.1 Refinery Economy of Scale and Location
Considerations ........................... 350
15.4 Carbohydrate Refining .................................... 352
15.5 Outlook and Perspectives ................................. 352
References ............................................... 352
Part IV Biomass Conversion: Processes and Technologies
16 Enzymes for Biorefineries ................................ 357
Sarah A. Teter, Feng Xu, Clenn E. Nedwin, and Joel
R. Cherry
16.1 Introduction ............................................. 357
16.2 Biomass as a Substrate ................................... 359
16.2.1 Composition of Biomass ............................ 359
16.2.1.1 Cellulose ................................ 359
16.2.1.2 Hemicellulose ............................ 360
16.2.1.3 Lignin ................................... 360
16.2.1.4 Starch ................................... 360
16.2.1.5 Protein .................................. 361
16.2.1.6 Lipids and Other Extracts ................ 361
16.2.2 Biomass Pretreatment .............................. 361
16.2.2.1 Dilute Acid Pretreatment ................. 362
16.2.2.2 Ammonia Fiber Explosion .................. 362
16.2.2.3 Hot-wash Pretreatment..................... 362
16.2.2.4 Wet Oxidation ............................ 363
16.3 Enzymes Involved in Biomass Biodegradation ............... 363
16.3.1 Glucanases or Cellulases .......................... 364
16.3.2 Hemicellulases .................................... 364
16.3.3 Nonhydrolytic Biomass-active Enzymes .............. 365
16.3.4 Synergism of Biomass-degrading Enzymes ............ 365
16.4 Cellulase Development for Biomass Conversion ............. 366
16.4.1 Optimization of the CBH-EG-BG System .............. 366
16.4.1.1 BG Supplement ............................ 366
16.4.1.2 Novel Cellulases with Better Thermal
Properties ............................... 367
16.4.1.3 Structure-Function Relationship of EG .... 370
16.4.2 Other Proteins Potentially Beneficial for
Biomass Conversion ................................ 371
16.4.2.1 Secretome of Cellulolytic Fungi .......... 371
16.4.2.2 Hydrolases ............................... 373
16.4.2.3 Nonhydrolytic proteins ................... 374
16.5 Expression of Cellulases ................................. 374
16.6 Range of Biobased Products ............................... 375
16.6.1 Fuels ............................................. 376
16.6.2 Fine/Specialty Chemicals .......................... 378
16.6.3 Fuel Cells ........................................ 378
16.7 Biorefineries: Outlook and Perspectives .................. 380
16.7.1 Potential of Biomass-based Material/Energy
Sources ........................................... 380
16.7.2 Economic Drivers Toward Sustainability ............ 381
References ............................................... 382
17 Biocatalytic and Catalytic Routes for the Production of
Bulk and Fine Chemicals from Renewable Resources ......... 385
Thomas Willke, Ulf Prüße, and Klaus-Dieter Vorlop
17.1 Introduction ............................................. 385
17.1.1 Renewable Resources ............................... 385
17.1.2 Products .......................................... 386
17.1.2.1 Bulk Chemicals and Intermediates ......... 386
17.1.2.2 Fine Chemicals and Specialties ........... 386
17.2 Historical Outline ....................................... 387
17.3 Processes ................................................ 388
17.3.1 Immobilization .................................... 389
17.3.2 Biocatalytic Routes from Renewable Resources to
Solvents or Fuels ................................. 390
17.3.2.1 Ethanol Production with Bacteria or
Yeasts? .................................. 390
17.3.3 Biocatalytic Route from Glycerol to
1,3-Propanediol ................................... 393
17.3.3.1 Introduction ............................. 393
17.3.3.2 The Process .............................. 393
17.3.4 Biocatalytic Route from Inulin to Difractose
Anhydride ......................................... 397
17.3.4.1 Introduction ............................. 397
17.3.4.2 Enzyme Screening ......................... 398
17.3.4.3 Genetic Engineering ...................... 398
17.3.4.4 Fermentation of the Recombinant E. coli .. 399
17.3.4.5 Enzyme Immobilization and Scale-up ....... 400
17.3.4.6 Summary .................................. 401
17.3.5 Chemical Route from Sugars to Sugar Acids ......... 402
17.3.5.1 Introduction ............................. 402
17.3.5.2 Gold Catalysts ........................... 403
17.3.5.3 Summary .................................. 405
References ............................................... 405
Volume 2
Part I Biobased Product Family Trees
Carbohydrate-based Product Lines
1 The Key Sugars of Biomass: Availability, Present
Non-Food Uses and Potential Future Development Lines ..... 3
Frieder W. Lichtenthaler
1.1 Introduction ............................................... 3
1.2 Availability of Mono- and Disaccharides .................... 4
1.3 Current Non-Food Industrial Uses of Sugars ................. 7
1.3.1 Ethanol ............................................. 7
1.3.2 Furfural ............................................ 8
1.3.3 D-Sorbitol (≡ D-Glucitol) ........................... 9
1.3.4 Lactic Acid → Polylactic Acid (PLA) ................ 10
1.3.5 Sugar-based Surfactants ............................ 21
1.3.6 'Sorbitan' Esters .................................. 11
1.3.7 N-Methyl-N-acyl-glucamides (NMGA) .................. 12
1.3.8 Alkylpolyglucosides (APG) .......................... 22
1.3.9 Sucrose Fatty Acid Monoesters ...................... 13
1.3.10 Pharmaceuticals and Vitamins ....................... 14
1.4 Toward Further Sugar-based Chemicals: Potential
Development Lines ......................................... 14
1.4.1 Furan Compounds .................................... 26
1.4.1.1 5-Hydroxymethylfurfural (HMF) ............. 26
1.4.1.2 5-(Glucosyloxymethyl)furfural (GMF) ....... 27
1.4.1.3 Furans with a Tetrahydroxybutyl
Side-chain ................................ 29
1.4.2 Pyrones and Dihydropyranones ....................... 20
1.4.3 Sugar-derived Unsaturated N-Heterocycles ........... 24
1.4.1.4 Pyrroles .................................. 24
1.4.1.5 Pyrazoles ................................. 26
1.4.1.6 Imidazoles ................................ 27
1.4.1.7 3-Pyridinols .............................. 28
1.4.1.8 Quinoxalines .............................. 28
1.4.4 Toward Sugar-based Aromatic Chemicals .............. 29
1.4.5 Microbial Conversion of Six-carbon Sugars into
Simple Carboxylic Acids and Alcohols ............... 32
1.4.5.1 Carboxylic Acids .......................... 34
1.4.5.2 Potential Sugar-based Alcohol
Commodities Obtained by Microbial
Conversions ............................... 36
1.4.6 Chemical Conversion of Sugars into Carboxylic
Acids .............................................. 37
1.4.7 Biopolymers from Polymerizable Sugar Derivatives ... 40
1.4.7.1 Synthetic Biopolyesters ................... 41
1.4.7.2 Microbial Polyesters ...................... 44
1.4.7.3 Polyamides ................................ 45
1.4.7.4 Sugar-based Olefinic Polymers
("Polyvinylsaccharides") .................. 47
1.5 Conclusion ........................................... 49
References ................................................ 52
2 Industrial Starch Platform - Status quo of Production,
Modification and Application .............................. 62
Dietmar R. Crüll, Franz Jetzinger, Martin Kozich,
Marnik M. Wastyn, and Robert Wittenberger
2.1 Introduction .............................................. 61
2.1.1 History of Starch .................................. 61
2.1.2 History of Industrial Starch Production ............ 62
2.1.3 History of Starch Modification ..................... 62
2.2 Raw Material for Starch Production ........................ 63
2.3 Industrial Production of Starch ........................... 65
2.3.1 Maize and Waxy Maize ............................... 66
2.3.2 Wheat .............................................. 66
2.3.3 Potato ............................................. 69
2.3.4 Tapioca ............................................ 70
2.3.5 Other Starches ..................................... 71
2.4 Properties of Commercial Starches ......................... 72
2.5 Modification of Starch Water .............................. 76
2.5.1 Modification Technology ............................ 76
2.5.1.1 Slurry Process (Heterogeneous
Conditions) ............................... 76
2.5.1.2 Dry Reactions ............................. 77
2.5.1.3 Paste Reactions (Homogeneous Conditions) .. 77
2.5.1.4 Extrusion Cooking ......................... 77
2.5.2 Types of Starch Modification ....................... 78
2.5.2.1 Physical Modification ..................... 78
2.5.2.2 Degraded Starches ......................... 79
2.5.2.3 Chemical Modification ..................... 80
2.6 Application of Starch and Starch Derivatives .............. 82
2.6.1 The Paper and Corrugating Industries ............... 83
2.6.1.1 Use of Starch in the Paper Industry ....... 83
2.6.1.2 Use of Starch in the Corrugating
Industry .................................. 85
2.6.2 The Textile Industry ............................... 85
2.6.2.1 Sizing Agents ............................. 85
2.6.2.2 Textile-printing Thickeners ............... 86
2.6.2.3 Finishing Agents .......................... 86
2.6.3 Adhesives .......................................... 87
2.6.4 Building Chemistry ................................. 87
2.6.5 Pharmaceuticals and Cosmetics ...................... 88
2.6.6 Laundry Starches ................................... 89
2.6.7 Bioconversion of Starch ............................ 89
2.6.8 Other Applications of Starch ....................... 91
2.7 Future Trends and Developments ............................ 92
2.7.1 Tailor-made Starches by Use of Biotechnological
Tools .............................................. 92
2.7.2 New Modification Technologies for New Properties ... 93
2.7.3 New Fields of Application .......................... 94
Bibliography .............................................. 95
3 Lignocellulose-based Chemical Products and Product
Family Trees .............................................. 97
Birgit Kamm, Michael Kamm, Matthias Schmidt, Thomas
Hirth, and Margit Schulze
3.1 Introduction .............................................. 97
3.2 Historical Outline of Chemical and Technical Aspects of
Utilization Lignocellulose in the 19th and 20th Century ... 98
3.2.1 From the Beginnings of Lignocellulose Chemistry
Until 1800 ......................................... 98
3.2.2 Lignocellulose Chemistry in the Eighteenth
Century ............................................ 99
3.2.2.1 Cellulose Saccharification ................ 99
3.2.2.2 Oxalic Acid ............................... 99
3.2.2.3 Xyloidin and Nitrocellulose ............... 99
3.2.2.4 Cellulose ................................ 100
3.2.2.5 Levulinic Acid ........................... 100
3.2.2.6 Lignin ................................... 101
3.2.2.7 Hemicellulose (Polyoses) and Furfural .... 101
3.2.2.8 Lignocellulose ........................... 202
3.2.3 Industrial Lignocellulose Utilization in the
19th and Beginning of the 20th Century ............ 102
3.3 Lignocellulosic Raw Material ............................. 203
3.3.1 Definition ........................................ 203
3.3.2 Sources and Composition ........................... 205
3.3.2.1 Sources .................................. 205
3.3.1 Chemical Composition of Lignocelluloses ........... 106
3.3.2.3 Carbohydrates in Lignocelluloses ......... 108
3.4 Lignocelluloses in Biorefineries ......................... 110
3.4.1 Background ........................................ 110
3.4.1.1 Example 1 ................................ 110
3.4.1.2 Example 2 ................................ 110
3.4.2 LCF Biorefinery ................................... 111
3.4.3 LCF Conversion Methods ............................ 113
3.4.3.1 Pretreatment Methods ..................... 113
3.4.3.2 Chemical Pulping Methods ................. 114
3.4.3.3 Enzymatic Methods ........................ 115
3.5 Lignin-based Product Lines ............................... 116
3.5.1 Isolation and Application Areas ................... 116
3.5.2 A Lignin-based Product Family Tree ................ 117
3.6 Hemicellulose-based Product Lines ........................ 119
3.6.1 Isolation and Application Areas ................... 119
3.6.2 A Hemicellulose-based Product Family Tree ......... 119
3.6.2.1 Mannan/Mannose Product Lines ............. 119
3.6.2.2 Xylan/Xylose Product Line ................ 120
3.6.3 Furfural and Furfural-based Products .............. 122
3.6.3.1 Furfural ................................. 122
3.6.3.2 A Furfural-based Family Tree ............. 127
3.7 Cellulose-based Product Lines ............................ 127
3.7.1 Isolation, Fractionation and Application Areas .... 127
3.7.2 Cellulose-based Key Chemicals ..................... 128
3.7.2.1 Glucose .................................. 128
3.7.2.2 Sorbitol ................................. 129
3.7.2.3 Glucosides ............................... 130
3.7.2.4 Fructose ................................. 131
3.7.2.5 Ethanol .................................. 132
3.7.2.6 Hydroxymethylfurfural .................... 133
3.7.2.7 Levulinic Acid ........................... 134
3.7.3 An HMF and Levulinic Acid-based Family Tree ....... 135
3.8 Outlook and Perspectives ................................. 138
References ............................................... 139
Lignin Line and Lignin-based Product Family Trees
4 Lignin Chemistry and its Role in Biomass Conversion ...... 151
Costa Brunow
4.1 Introduction ............................................. 151
4.2 Historical Overview ...................................... 152
4.3 The Structure of Lignin .................................. 152
4.3.1 Definition ........................................ 152
4.3.2 The Bonding of the Phenylpropane Units ............ 153
4.3.3 Bonding Pattems and Functional Groups ............. 256
4.3.3.1 General .................................. 156
4.3.3.2 Survey of Different Types of Lignin
Unit ..................................... 156
4.4 Role of Lignin in Biomass Conversion ..................... 159
4.4.1 Introduction ...................................... 159
4.4.2 Low-molecular-weight Chemicals from Lignin ........ 260
4.4.3 Polymeric Products ................................ 260
4.4.4 Biodegradation .................................... 260
References ............................................... 260
5 Industrial Lignin Production and Applications ............ 265
E. Kendall Pye
5.1 Introduction ............................................. 165
5.2 Historical Outline of Lignin Production and
Applications ............................................. 168
5.2.1 Lignosulfonates from the Sulfite Pulping
Industry .......................................... 168
5.2.2 Lignin from the Kraft Pulping Industry ............ 169
5.2.3 Lignin from the Soda Pulping Industry ............. 170
5.3 Existing Industrial Lignin Products ...................... 272
5.3.1 Lignosulfonates ................................... 272
5.3.1.1 Chemical Characteristics of
Lignosulfonates .......................... 272
5.3.1.2 Lignosulfonate Producers ................. 273
5.3.1.3 Markets for Lignosulfonates .............. 274
5.3.2 Kraft Pulping and Kraft Lignin Recovery ........... 275
5.3.2.1 Producers of Kraft Lignin ................ 275
5.3.2.2 Markets for Kraft Lignin ................. 275
5.3.3 Lignins Produced from the Soda Process ............ 276
5.3.4 Lignin from Other Biomass Processing Operations ... 276
5.3.5 Comparisons of the Physical and Chemical
Properties of Commercially Available Lignins ...... 276
5.4 Lignin from Biorefineries ................................ 277
5.4.1 Advantages of Ligtoin and Hemicellulose Removal
on Saccharification and Fermentation of
Cellulose ......................................... 277
5.4.2 Lignin from an Organosolv Biorefinery ............. 279
5.5 Applications and Markets for Lignin ...................... 182
5.5.1 Phenol-Formaldehyde Resin Applications ............ 282
5.5.2 The Potential Use of Biorefinery Lignin in
Phenolic Resins ................................... 282
5.5.3 Panelboard Adhesives .............................. 283
5.5.4 Thermoset Resins for Molded Products .............. 284
5.5.5 Friction Materials ................................ 284
5.5.6 Foundry Resins .................................... 284
5.5.7 Insulation Materials .............................. 285
5.5.8 Decorative Laminates .............................. 285
5.5.9 Panel and Door Binders ............................ 285
5.5.10 Rubber Processing ................................. 286
5.5.11 The Opportunity for Lignin in Phenol-
Formaldehyde Resin Markets ........................ 187
5.6 Lignin as an Antioxidant ................................. 187
5.6.1 Antioxidants in Animal Feed Supplements ........... 188
5.6.2 Antioxidants in the Rubber Industry ............... 188
5.6.3 Antioxidants in the Lubricants Industry ........... 288
5.7 Applications for Water-soluble, Derivatized Lignins ...... 189
5.7.1 Concrete Admixtures ............................... 189
5.7.2 Dye Dispersants ................................... 190
5.7.3 Asphalt Emulsifiers ............................... 192
5.7.4 Agricultural Applications ......................... 192
5.7.5 Dispersants for Herbicides, Pesticides and
Fungicides ........................................ 193
5.8 New and Emerging Markets for Lignin ...................... 194
5.8.1 Printed Circuit Board Resins ...................... 194
5.8.2 Animal Health Applications ........................ 195
5.8.3 Animal Feed Supplement ............................ 196
5.8.4 Carbon Fibers for Mass-produced Vehicles .......... 196
5.9 Conclusions and Perspectives ............................. 198
References ............................................... 199
Protein Line and Amino Acid-based Product Family Trees
6 Towards Integration of Biorefinery and Microbial Amino
Acid Production .......................................... 201
Achim Marx, Volker F. Wendisch, Ralf Kelle, and Stefan
Buchholz
6.1 Introduction ............................................. 201
6.2 Present State of the Industry ............................ 202
6.2.1 Microbial Amino Acid Production ................... 202
6.2.2 Biorefinery and the Building-block Concept ........ 202
6.2.3 Metabolic Engineering and the Building-block
Concept ........................................... 204
6.3 Environmental and Commercial Consideration of Microbial
Amino Acid Production Integrated in a Biorefinery ........ 205
6.4 Technical Constraints for Integration of Microbial
Amino Acid Fermentation into a Biorefinery ............... 209
6.4.1 Mono-septic Operation ............................. 209
6.4.2 Carbon Sources .................................... 209
6.4.3 Nitrogen Source ................................... 211
6.4.4 Phosphorus Source ................................. 211
6.4.5 Mixing and Oxygen Supply .......................... 212
6.4.6 Toxicity .......................................... 212
6.4.7 Cultivation Temperature ........................... 213
6.5 Outlook and Perspectives ................................. 213
Acknowledgment............................................ 214
References ............................................... 215
7 Protein-based Polymers: Mechanistic Foundations for
Bioproduction and Engineering ............................ 217
Dan W. Urry
7.1 Introduction ............................................. 217
7.1.1 Definitions ....................................... 217
7.1.1.1 Proteins and Protein-based Polymers ...... 217
7.1.1.2 Two Basic Principles for Protein-based
Polymer Engineering ...................... 217
7.1.2 Proteins in Aqueous Media ......................... 218
7.1.3 Thermodynamics of Proteins in Water ............... 218
7.1.3.1 Exothermic Hydration of Apolar Groups .... 218
7.1.3.2 The Change in Gibbs Free Energy of
Hydrophobic Association .................. 218
7.1.3.3 The Apolar-Polar Repulsive Free Energy
of Hydration, ΔGap ...................... 218
7.1.4 The Inverse Temperature Transition for
Hydrophobic Association ........................... 219
7.1.5 The Role of Elasticity in the Engineering of
Protein-based Polymers ............................ 219
7.1.5.1 Near Ideal Elasticity Provides for
Efficient Energy Conversion .............. 219
7.1.5.2 Mechanism of Near Ideal Elasticity ....... 220
7.1.6 Many of the Advantages of Protein-based
Polymeric Materials ............................... 220
7.2 Historical Outline ....................................... 221
7.2.1 Historical Beginnings of (Elastic) Protein-based
Polymer Development ............................... 221
7.2.2 Mechanistic Foundations: Fundamental Engineering
Principles ........................................ 222
7.2.2.1 The Hydrophobic Consilient Mechanism ..... 222
7.2.2.2 The Elastic Consilient Mechanism ......... 223
7.2.3 Highlights of Bioproduction ....................... 223
7.3 Bioproduction ............................................ 224
7.3.1 Gene Construction using Recombinant DNA
Technology......................................... 225
7.3.1.1 Preparation of Monomer Genes and the
PCR Technique ............................ 225
7.3.1.2 Transformation, Monomer Gene Production
and Sequence Verification ................ 226
7.3.1.3 Monomer Gene Concatenation Produces
Multimer Genes of Monomer ................ 226
7.3.2 E. coli Transformation for Protein-based Polymer
Expression ........................................ 227
7.3.3 Fermentation using Transformed E. coli ............ 227
7.4 Purification of Protein-based Polymers ................... 227
7.4.1 Use of the Inverse Temperature Transition as
a Method of Purification .......................... 228
7.4.1.1 Purification by Phase Separation as
Demonstrated by SDS-PAGE ................. 228
7.4.1.2 Purification by Phase Separation Shown
by Carbon-14-labeled E. coli ............. 228
7.4.2 Physical Characterization and Verification of
Product Integrity ................................. 229
7.4.2.1 Gross Visualization of the Phase
Separated Product ........................ 229
7.4.2.2 Sequence Integrity and Purity Evaluated
by Nuclear Magnetic Resonance ............ 229
7.4.2.3 Mass Spectra Reaffirm Size of Expressed
Polymer .................................. 229
7.4.3 Biocompatibility .................................. 230
7.4.3.1 The Challenge of Using E. coii-produced
Protein as a Biomaterial ................. 230
7.4.3.2 Removal of Endotoxins and Determination
of Levels ................................ 230
7.4.3.3 Western Immunoblot Technique to
Demonstrate Level of Purity .............. 230
7.4.3 A Western Immunodotblot Technique to Demonstrate
Medical Grade Purity .............................. 231
7.4.3.5 Subcutaneous Injection in the
Guinea-pig ............................... 231
7.4.3.6 ASTM Tests ............................... 232
7.5 Mechanistic Foundations for Engineering Protein-based
Polymers ................................................. 232
7.5.1 Phenomenological Axioms ........................... 232
7.5.2 The Change in Gibbs Free Energy for Hydrophobic
Association, ΔGHA ................................. 232
7.5.2.1 The Change in Gibbs Free Energy
Attending a Phase Transition, δΔGt(χ) .... 234
7.5.2.2 The ΔGHA-based Hydrophobicity Scale for
Amino Acid Residues ...................... 234
7.5.2.3 ΔG°HA-based Hydrophobicity Scale of
Prosthetic Groups, etc. .................. 235
7.5.2.4 Comprehensive Hydrophobic Effect: δGHA
Responds to all Variables ................ 237
7.5.2.5 The Apolar-Polar Repulsive Free Energy
of Hydration, ΔGap ....................... 237
7.5.3 The Coupling of Hydrophobic and Elastic
Mechanisms ........................................ 237
7.6 Examples of Applications ................................. 238
7.6.1 Soft Tissue Restoration ........................... 238
7.6.1.1 Prevention of Post-surgical Adhesions .... 238
7.6.1.2 Soft Tissue Augmentation ................. 238
7.6.1.3 Soft Tissue Reconstruction: The Concept
of Temporary Functional Scaffoldings ..... 239
7.6.2 Controlled Release Devices for Amphiphilic Drugs
and Therapeutics .................................. 240
7.6.2.1 The Use of AGap in the Design of
Controlled-release Devices ............... 240
7.6.2.2 Prevention of Pressure Ulcers by Means
of Elastic Patches for Drag Delivery ..... 240
7.6.3 Fibers of Improved Elastic Moduli and Break
Stresses and Strains .............................. 241
7.6.4 Programmably Biodegradable Thermoplastics ......... 241
7.6.5 Acoustic Absorption ............................... 242
7.7 Outlook and Perspectives ................................. 242
7.7.1 List of Gene Constructions and Expressed
Protein-based Polymers ............................ 242
7.7.2 Efforts Toward Low-cost Production in other
Microbes and in Plants ............................ 242
7.8 Patents .................................................. 245
7.8.1 Patents of D.W. Urry on Protein-based Polymers .... 245
7.8.2 Result of Ex Parte Patent Reexamination Request
to the USPTO ...................................... 245
Acknowledgment ........................................... 249
References ............................................... 249
Biobased Fats (Lipids) and Oils
8 New Syntheses with Oils and Fats as Renewable
Raw Materials for the Chemical Industry .................. 253
Ursula Biermann, Wolfgang Friedt, Siegmund Lang,
Wilfried Lühs, Guido Machmüller, Jürgen О. Metzger,
Mark Rüsch gen. Klaas, Hans J. Schäfer, Manfred
P. Schneider
8.1 Introduction ............................................. 253
8.2 Reactions of Unsaturated Fatty Compounds ................. 254
8.2.1 Oxidations ........................................ 254
8.2.1.1 New Methods for the Epoxidation of
Unsaturated Fatty Acids .................. 254
8.2.1.2 Oxidation to vic-Dihydroxy Fatty Acids ... 257
8.2.1.3 Oxidative Cleavage ....................... 258
8.2.2 Transition Metal-Catalyzed Syntheses of Aromatic
Compounds ......................................... 259
8.2.3 Olefin Metathesis ................................. 259
8.2.4 Pericyclic Reactions .............................. 260
8.2.5 Radical Additions ................................. 261
8.2.5.1 Solvent-Free, Copper-Initiated
Additions of 2-Halocarboxylates .......... 262
8.2.5.2 Addition of Perfluoroalkyl Iodides ....... 263
8.2.5.3 Thermal Addition of Alkanes .............. 264
8.2.6 Lewis Acid-Induced Cationic Addition .............. 264
8.2.7 Nucleophilic Addition to Reversed-Polarity
Unsaturated Fatty Acids ........................... 265
8.3 Reactions of Saturated Fatty Compounds ................... 266
8.3.1 Radical C-C Coupling .............................. 266
8.3.1.1 Oxidative Coupling of C2 Anions of
Fatty Acids .............................. 266
8.3.1.2 Anodic Homo- and Heterocoupling of
Fatty Acids (Kolbe Electrolysis) ......... 267
8.3.2 Functionalization of C-H Bonds .................... 269
8.3.2.1 Oxidation of Nonactivated C-H Bonds ...... 269
8.3.2.2 Oxidation of Allylic C-H Bonds ........... 269
8.4 Enzymatic Reactions ...................................... 270
8.4.1 Lipase Catalyzed Transformations .................. 270
8.4.1.1 Lipase-Catalyzed Syntheses of
Monoglycerides and Diglycerides .......... 270
8.4.1.2 Lipase-Catalyzed Syntheses of
Carbohydrate Esters ...................... 272
8.4.2 Microbial Transformations ......................... 272
8.4.2.1 Microbial Hydration of Unsaturated
Fatty Acids .............................. 272
8.4.2.2 Microbial ω- and β-Oxidation of Fatty
Acids .................................... 273
8.4.3 Microbial Conversion of Oils/Fats and Glucose
into Glycolipids .................................. 274
8.5 Improvement in Natural Oils and Fats by Plant Breeding ... 275
8.5.1 Gene Technology as an Extension of the
Methodological Repertoire of Plant Breeding ....... 275
8.5.2 New Oil Qualities by Oil Designed with Available
Agricultural Varieties ............................ 276
8.5.3 Overview of Renewable Raw Materials Optimized by
Breeding .......................................... 277
8.5.3.1 Soybean .................................. 277
8.5.3.2 Rapeseed ................................. 277
8.5.3.3 Sunflower ................................ 280
8.5.3.4 Peanut ................................... 281
8.5.3.5 Linseed .................................. 281
8.5.4 Concluding Remarks on the Use of Gene Technology .. 281
8.6 Future Prospects ......................................... 282
Acknowledgments .......................................... 282
References ............................................... 282
9 Industrial Development and Application of Biobased
Oleochemicals ............................................ 291
Karlheinz Hill
9.1 Introduction ............................................. 291
9.2 The Raw Materials ........................................ 292
9.3 Ecological Compatibility ................................. 293
9.4 Examples of Products ..................................... 294
9.4.1 Oleochemicals for Polymer Applications ............ 295
9.4.1.1 Dimerdiols Based on Dimer Acid ........... 297
9.4.1.2 Polyols Based on Epoxides ................ 298
9.4.2 Biodegradable Fatty Acid Esters for Lubricants .... 299
9.4.3 Surfactants and Emulsifiers Derived from
Vegetable Oil ..................................... 301
9.4.3.1 Fatty Alcohol Sulfate (FAS) .............. 303
9.4.3.2 Acylated Proteins and Amino Acids
(Protein-Fatty Acid Condensates) ......... 304
9.4.3.3 Carbohydrate-based Surfactants - Alkyl
Polyglycosides ........................... 305
9.4.3.4 Alkyl Polyglycoside Carboxylate .......... 307
9.4.3.5 Polyol Esters ............................ 307
9.4.3.6 Multifunctional Care Additives for Skin
and Hair ................................. 309
9.4.4 Emollients ........................................ 310
9.4.4.1 Introduction ............................. 310
9.4.4.2 Dialkyl Carbonate ........................ 311
9.4.4.3 Guerbet Alcohols ......................... 311
9.5 Perspectives ............................................. 312
9.6 Trademarks ............................................... 312
References ............................................... 312
Special Ingredients and Subsequent Products
10 Phytochemicals, Dyes, and Pigments in the Biorefinery
Context .................................................. 315
George A. Kraus
10.1 Introduction ............................................. 315
10.2 Historical Outline ....................................... 316
10.3 Phytochemicals from Corn and Soybeans .................... 317
10.3.1 Phytosterols ...................................... 317
10.3.2 Lecithin .......................................... 318
10.3.3 Tocopherols ....................................... 319
10.3.4 Carotenoids ....................................... 320
10.3.5 Phytoestrogens .................................... 321
10.3.6 Saponins .......................................... 321
10.3.7 Protease Inhibitors ............................... 322
10.4 Outlook and Perspectives ................................. 323
References ............................................... 323
11 Adding Color to Green Chemistry? An Overview of the
Fundamentals and Potential of Chlorophylls ............... 325
Mathias О. Senge and Julia Richter
11.1 Introduction ............................................. 325
11.2 Historical Outline ....................................... 325
11.3 Chlorophyll Fundamentals ................................. 326
11.3.1 Occurrence and Basic Structures ................... 326
11.3.2 Principles of Chlorophyll Chemistry ............... 327
11.3.3 Isolation of Chlorophylls ......................... 328
11.4 Chlorophyll Breakdown and Chemical Transformations ....... 330
11.4.1 Biological Chlorophyll Catabolism ................. 330
11.4.2 Geological Chlorophyll Degradation -
Petroporphyrins ................................... 331
11.4.3 Chemical Degradation of Chlorophylls .............. 333
11.5 Industrial Uses of Chlorophyll Derivatives ............... 335
11.6 A Look at "Green" Chlorophyll Chemistry .................. 337
11.7 Outlook and Perspectives ................................. 339
Acknowledgment ........................................... 341
References and Notes ..................................... 341
Part II Biobased Industrial Products, Materials and Consumer
Products
12 Industrial Chemicals from Biomass - Industrial Concepts .. 347
Johan Thoen and Rainer Busch
12.1 Introduction ............................................. 347
12.2 Historical Outline ....................................... 347
12.3 Basic Principles ......................................... 349
12.3.1 Primary Conversion Technologies of Biomass ........ 350
12.3.1.1 Gasification ............................. 350
12.3.1.2 Hydrothermolysis ......................... 351
12.3.1.3 Fermentation to Ethanol .................. 351
12.4 Current Status ........................................... 352
12.4.1 Europe ............................................ 351
12.4.2 United States ..................................... 353
12.4.3 Products .......................................... 353
12.5 Industrial Concepts ...................................... 354
12.5.1 Introduction ...................................... 354
12.5.2 Biorefinery Concepts .............................. 355
12.5.3 Classes of Bioproduct ............................. 356
12.5.4 Opportunities for Industrial Bioproducts .......... 357
12.5.5 Product Categories Based on C6-Carbon Sugars to
Bioproducts ....................................... 358
12.5.6 Product Categories Based on C5-Carbon Sugars to
Bioproducts ....................................... 358
12.5.7 Thermochemical Conversion of Sugars to
Bioproducts ....................................... 360
12.5.8 Thermochemical Conversion of Oils and Lipid
Based Bioproducts ................................. 361
12.5.9 Bioproducts via Gasification ...................... 361
12.5.10 Bioproducts via Pyrolysis ........................ 362
12.5.11 Biocomposites .................................... 362
12.6 Outlook and Perspectives ................................. 362
References ............................................... 364
13 Succinic Acid - A Model Building Block for Chemical
Production from Renewable Resources ...................... 367
Todd Werpy, John Frye, and John Holladay
13.1 Introduction ........................................ 367
13.2 Economics of Feedstock Supply ....................... 368
13.3 Succinic Acid Fermentation .......................... 369
13.4 Succinic Acid Catalytic Transformations ............. 372
13.5 Current Petrochemical Technology .................... 373
13.5.1 1,4-BDO, THF, GBL, and NMP ................... 373
13.6 Current Biobased Technology .............................. 375
13.6.1 1,4-BDO, GBL, and NMP ............................. 375
13.6.2 Derivatives of Diammonium Succinate ............... 376
13.7 Conclusions .............................................. 378
References ............................................... 378
14 Polylactic Acid from Renewable Resources ................. 381
Patrick Gruber, David E. Henton, and Jack Starr
14.1 Introduction ............................................. 381
14.2 Lactic Acid .............................................. 382
14.2.1 Lactic Acid Production Routes ..................... 382
14.2.1.1 Chemical Synthesis ....................... 382
14.2.1.2 Fermentation ............................. 383
14.2.2 Production by Fermentation ........................ 384
14.2.2.1 Microorganisms ........................... 384
14.2.2.2 Sugar Feedstock .......................... 385
14.2.2.3 Nutrients ................................ 385
14.2.2.4 Neutralizing Agent ....................... 385
14.2.3 Acidification ..................................... 386
14.2.3.1 Strong Acid Addition ..................... 386
14.2.3.2 Salt Splitting Technology ................ 387
14.2.4 Purification ...................................... 388
14.2.4.1 Cell Removal ............................. 388
14.2.4.2 Separation of Residual Sugars,
Nutrients and Fermentation By-products ... 388
14.3 PLA Production ........................................... 390
14.3.1 Polymerization of Lactide ......................... 392
14.4 Control of Crystalline Melting Point ..................... 394
14.5 Rheology Control by Molecular Weight and Branching ....... 396
14.5.1 Melt Rheology of Linear PLA ....................... 397
14.5.2 Melt Rheology of Branched PLA ..................... 397
14.5.3 Branching Technology .............................. 398
14.5.3.1 Multi-functional Polymerization
Initiators ............................... 398
14.5.3.2 Hydroxy Cyclic Ester and/or Carbonate
Polymerization Initiators ................ 398
14.5.3.3 Multi-cyclic Ester, Multi-cyclic
Carbonate and/or Multi-cyclic Epoxy
Comonomers ............................... 398
14.5.3.4 Free Radical Cross-linking ............... 399
14.6 Melt Stability ........................................... 399
14.7 Applications and Performance ............................. 400
14.8 PLA Stereocomplex ........................................ 401
14.9 Fossil Resource Use and Green House Gases ................ 402
14.10 Summary ................................................. 402
Abbreviations ............................................ 403
References ............................................... 404
15 Biobased Consumer Products for Cosmetics ................. 409
Thomas C. Kripp
15.1 Introduction and Historical Outline ...................... 409
15.1.1 Cosmetics Past and Present ........................ 409
15.1.2 Bionics: Learning from Nature ..................... 410
15.2 Betaine, The Conditioner Made from Sugar Beet ............ 410
15.2.1 Occurrence ........................................ 410
15.2.2 Chemical Properties ............................... 411
15.2.3 Production ........................................ 411
15.2.4 Use and Fields of Application ..................... 412
15.2.5 Innovation Through Combination: Betaine Esters .... 414
15.2.6 Summary and Prospects ............................. 415
15.3 Chitosan, Hair-setting Agent from the Ocean .............. 415
15.3.1 Chitin, a Precursor of Chitosan ................... 415
15.3.2 Occurrence of Chitin .............................. 415
15.3.3 Production ........................................ 416
15.3.3.1 Purification of Chitin ................... 416
15.3.3.2 Production of Chitosan ................... 417
15.3.4 Chitosan in cosmetic products ..................... 419
15.3.5 Summary and Prospect .............................. 421
15.4 From Energy Reserve to Shampoo Bottle: Biopol ............ 422
15.4.1 Biodegradable Packages ............................ 422
15.4.2 What is "Biopol"? ................................. 423
15.4.3 Biodegradability of Biopol ........................ 424
15.4.4 The Long Way to the Shampoo Bottle ................ 426
15.4.4.1 Product Development ...................... 426
15.4.4.2 Market Launch ............................ 427
15.4.5 Quo vadis, Biopol? ................................ 428
15.5 Natural Apple-peel Wax: Protection for Hair and Skin ..... 429
15.5.1 Raw Material Source ............................... 429
15.5.2 Apple-peel Wax .................................... 430
15.5.3 Observations ...................................... 430
15.5.4 Production of Apple-peel Wax ...................... 432
15.5.5 Chemical Composition .............................. 433
15.5.6 Mode of Action and Uses ........................... 433
15.5.6.1 Skin Cosmetics ........................... 434
15.5.6.2 Hair Care ................................ 434
15.5.7 Market Launch ..................................... 436
15.5.8 Summary and Prospects ............................. 436
15.6 Ilex Resin: From Shiny Leaves to Shiny Hair .............. 437
15.6.1 Holly ............................................. 437
15.6.2 Extraction of a Resin Fraction .................... 438
15.6.3 Effects in Cosmetics .............................. 439
15.6.3.1 Skin Care ................................ 439
15.6.3.2 Hair Care ................................ 439
15.6.3.3 Styling .................................. 440
15.6.4 Summary and Prospects ............................. 440
References ............................................... 441
Part III Biobased Industry: Economy, Commercialization and
Sustainability
16 Industrial Biotech - Setting Conditions to Capitalize
on the Economic Potential ................................ 445
Rolf Bachmann and Jens Riese
16.1 Introduction ............................................. 445
16.2 Time to Exploit the Potential ............................ 446
16.2.1 How Far Can it Go? ................................ 446
16.2.2 Better Technology, Faster Results ................. 447
16.2.3 Environmentally and Balance-sheet Friendly ........ 448
16.2.4 Rekindling Chemicals Innovation ................... 450
16.2.5 Increasing Corporate Action in all Segments ....... 452
16.3 The Importance of Residual Biomass ....................... 452
16.3.1 Why Waste Biomass Works ........................... 452
16.3.2 Economic Benefits and Regulation .................. 452
16.3.3 Still a Long Way to Go ............................ 454
16.3.4 Collaboration Will Push Biomass Conversion
Forward ........................................... 454
16.4 Overcoming the Challenges Ahead .......................... 455
16.4.1 Internal Obstacles ................................ 455
16.4.2 External Challenges ............................... 456
16.5 Overcoming Challenges .................................... 457
16.5.1 Case 1: Building a Biotech Strategy ............... 457
16.5.2 Case 2: Identifying the Right Opportunities ....... 458
16.5.3 Case 3: Managing Uncertainties .................... 459
16.5.4 Case 4: Preparing the Launch and Market
Development ....................................... 460
16.5.5 Case 5: Building a Favorable External
Environment ....................................... 461
16.6 More Needs to be Done .................................... 461
Subject Index ................................................. 463
|