Moore P. Visualizing the invisible: imaging techniques for the structural biologist (Oxford; New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMoore P. Visualizing the invisible: imaging techniques for the structural biologist. - Oxford; New York: Oxford University Press, 2012. - xviii, 362 p. - Ind.: p.355-362. - ISBN 978-0-19-976709-0
 

Оглавление / Contents
 
Preface ....................................................... xiv
Notes for the Reader ......................................... xvii

PART ONE Fundamentals

1  On the Scattering of Electromagnetic Radiation by Atoms
   and Molecules ................................................ 3
   1.1  What is electromagnetic radiation? ...................... 4
   1.2  Atoms are electrically polarized by electromagnetic
        radiation ............................................... 7
   1.3  Oscillating dipoles emit electromagnetic radiation ...... 8
   1.4  The electrons in atoms and molecules scatter X-rays as
        though they were unbound ............................... 10
   1.5  The scattering of X-rays by molecules depends on
        atomic positions ....................................... 11
   1.6  Radiation detectors measure energy, not field
        strength ............................................... 14
   1.7  If the radiation being scattered is unpolarized, the
        polarization correction depends only on scattering
        angle .................................................. 14
   1.8  The coherence length of the radiation used in
        scattered experiments affects the accuracy with which
        la can be measured ..................................... 15
   1.9  Measurement accuracy also depends on transverse
        coherence length ....................................... 16
   Problems .................................................... 18
   Appendix 1.1 Exponential  notation,  complex  numbers,
        and Argand diagrams .................................... 18
   Appendix 1.2 The polarization correction for unpolarized
        radiation .............................................. 19

2  Molecular Scattering and Fourier Transforms ................. 22
   2.1  F(S) is a function of three angular variables .......... 23
   2.2  Fourier series are a useful way to represent
        structures ............................................. 24
   2.3  In the limit of d = ∞, the Fourier series becomes
        the Fourier transformation ............................. 26
   2.4  The Great Experiment ................................... 28
   2.5  The shift theorem leads to a simple expression for
        the scattering of molecules ............................ 29
   2.6  The scaling theorem: Big things in real space are
        small things in reciprocal space ....................... 31
   2.7  The square wave and the Dirac delta function ........... 32
   2.8  Multiplication in real and reciprocal space: The
        convolution theorem .................................... 34
   2.9  Instrument transfer functions and convolutions ......... 37
   2.10 The autocorrelation theorem ............................ 39
   2.11 Rayleighs theorem ...................................... 40
   Problems .................................................... 42

3  Scattering by Condensed Phases .............................. 44
   3.1  The forward scatter from macroscopic samples is 90°
        out of phase with respect to the radiation that
        induces it ............................................. 44
   3.2  Scattering alters the phase of all the radiation that
        passes through a transparent sample .................... 47
   3.3  Phase changes are indistinguishable from velocity
        changes ................................................ 48
   3.4  Polarizabilities do not have to be real numbers ........ 49
   3.5  Atomic polarization effects are small .................. 50
   3.6  The frequency dependence of polarizabilities can be
        addressed classically .................................. 50
   3.7  When the imaginary part of a is large, energy is
        absorbed ............................................... 53
   3.8  The refractive index of substances for X-rays is less
        than 1.0 ............................................... 54
   3.9  The wavelength dependences of the processes that
        control light and X-ray polarizabilities are
        different .............................................. 55
   3.10 On the frequency dependence of atomic scattering
        factors for X-rays ..................................... 56
   3.11 Real X-ray absorption and dispersion spectra do not
        look the way classical theory predicts ................. 57
   3.12 The imaginary component of f can be determined by
        measuring mass absorption coefficients ................. 59
   3.13 Scattering can be described using scattering lengths
        and cross sections ..................................... 60
   3.14 Neutron scattering can be used to study molecular
        structure .............................................. 61
   3.15 Electrons are strongly scattered by atoms and
        molecules .............................................. 64
   3.16 Electrons are scattered inelastically by atoms ......... 65
   Problems .................................................... 65
   Appendix 3.1  Forward scatter from a thin slab .............. 66
   Appendix 3.2 A classical model for the motion of electrons
       in the presence of electromagnetic radiation ............ 67
   Appendix 3.3 Energy absorption and the imaginary part of a .. 68

PART TWO Crystallography

4  On the Diffraction of X-rays by Crystals .................... 73
   4.1  The Fourier transform of a row of delta functions is
        a row of delta functions ............................... 74
   4.2  Sampling in reciprocal space corresponds to
        replication in real space (and vice versa) ............. 75
   4.3  Crystals can be described as convolutions of
        molecules with lattices ................................ 76
   4.4  Lattices "amplify" Fourier transforms .................. 77
   4.5  The Nyquist theorem tells you how often to sample
        functions when computing Fourier transforms ............ 78
   4.6  Lattices divide space into unit cells .................. 80
   4.7  The minimal element of structure in any unit cell is
        its asymmetric unit .................................... 83
   4.8  The transform of a three-dimensional lattice is
        nonzero only at points in reciprocal space that obey
        the von Laue equations ................................. 84
   4.9  The Fourier transforms of crystals are usually
        written using unit cell vectors as the coordinate
        system ................................................. 86
   4.10 Bragg s law provides a second way to describe
        crystalline diffraction patterns ....................... 87
   4.11 Von Laue s integers are Miller indices ................. 89
   4.12 Ewald s construction provides a simple tool for
        understanding crystal diffraction ...................... 91
   Problems .................................................... 92
   Appendix 4.1 The Bravais lattices ........................... 93
   Appendix 4.2 On the relationship between unit cells in
        real space and unit cells in reciprocal space .......... 95

5  On the Appearance of Crystalline Diffraction Patterns ....... 96
   5.1  Diffraction data are collected from macromolecular
        crystals using the oscillation method .................. 96
   5.2  Measured intensities must be corrected for systematic
        error .................................................. 99
   5.3  Radiation damage kills crystals ....................... 100
   5.4  Diffraction patterns tend to be centrosymmetric ....... 100
   5.5  Anomalous diffraction can provide useful information
        about the chemical identities of atoms in electron
        density maps .......................................... 102
   5.6  Anomalous diffraction effects can be used to
        determine the absolute hand of chiral molecules ....... 102
   5.7  Crystal symmetry results in reciprocal space
        symmetry .............................................. 103
   5.8  Real crystals are not perfecdy ordered ................ 106
   5.9  Disorder weakens Bragg reflections .................... 106
   5.10 Disorder makes crystals scatter in directions that
        are not allowed by von Laue s equations ............... 109
   5.11 Thermal diffuse scatter need not be isotropic ......... 110
   5.12 Average B-factors can be determined directly from
        diffraction data ...................................... 113
   5.13 Most crystals are mosaic .............................. 114
   5.14 A single crystal structure can reveal the
        alternative conformations of a macromolecule that is
        polymorphic ........................................... 115
   Problems ................................................... 116
   Appendix 5.1  Debye-Waller factors and diffuse
        scattering ............................................ 117
   Appendix 5.2  Correlated motions and diffuse scatter in
        one dimension ......................................... 120
   Appendix 5.3  Random walks in two dimensions ............... 121

6  Solving the Phase Problem .................................. 123
   6.1  The phases of reflections are measured by comparing
        them to a standard .................................... 123
   6.2  Macromolecular diffraction patterns can be phased by
        adding heavy atoms to srystalls ....................... 125
   6.3  The number of high-Z atoms per unit cell needed for
        phasing is small ...................................... 125
   6.4  The heavy atom isomorphous replacement strategy for
        phasing requires the comparison of intensities
        measured from different crystals ...................... 126
   6.5  Anomalous data can also provide phase information ..... 128
   6.6  Patterson functions display the interatomic
        distances and directions of a crystal ................. 130
   6.7  Macromolecular crystal structures cannot be solved
        using Patterson functions alone ....................... 132
   6.8  Heavy atom sites in derivatized crystals can be
        located using difference Pattersons ................... 132
   6.9  Atomic coordinates can be deduced from the Harker
        sections of the Patterson functions ................... 133
   6.10 Multiple-wavelength anomalous diffraction combines
        anomalous and heavy atom phase determination in
        a single experiment ................................... 135
   6.11 Experimental error complicates the experimental
        determination of phases ............................... 137
   6.12 Experimental phase data specify phase probability
        distributions ......................................... 139
   6.13 The impact of phase errors on electron density maps
        can be controlled ..................................... 141
   6.14 The likelihood that the experiments done to phase a
        diffraction pattern have produced reliable data can
        be assessed statistically ............................. 143
   6.15 Diffraction patterns can be phased by molecular
        replacement ........................................... 144
   6.16 Molecular replacement searches can be divided into a
        rotational part and a translations part ............... 145
   Problems ................................................... 146
   Appendix 6.1  Heavy atom difference Pattersons and
        anomalous difference Pattersons ....................... 147

7  Electron Density Maps and Molecular Structures ............. 150
   7.1  Experimental electron density maps display the
        variation in electron density within the unit cell
        with respect to the average ........................... 150
   7.2  Electron density maps are contoured in units of
        sigma ................................................. 151
   7.3  The point-to-point resolution of an electron density
        map is roughly 1/|S|max ............................... 151
   7.4  How high is high enough? .............................. 155
   7.5  Macromolecular electron density maps having
        resolutions worse than ~3.5 Ǻ are difficult to
        interpret chemically .................................. 156
   7.6  Solvent may be visible in macromolecular electron
        density maps .......................................... 157
   7.7  Initial models must be refined ........................ 158
   7.8  R-factors are used to measure the consistency of
        molecular models with measured diffraction data ....... 159
   7.9  Free-R is useful tool for validating refinements ...... 161
   7.11 Regions ehere models do not correspond to electron
        density maps can be  identified using difference
        electron density maps ................................. 163
   7.12 Experimental electron density maps can be improved
        by phase modification arfd extension .................. 164
   7.13 Solvent flattening and the Nyquist theorem ............ 166
   7.14 Let the buyer beware .................................. 167
   Problems ................................................... 170
   Appendix 7.1  The inverse Fourier transform of the
        spherical aperture function ........................... 170
   Appendix 7.2  Estimating the R-factor of crystal
        structures that are perfect nonsense .................. 172
   Appendix 7.3  The difference Fourier ....................... 173

PART THREE Noncrystallographic Diffraction

8  Diffraction from Noncrystalline Samples .................... 179
   8.1  X-ray microscopy can be done without lenses ........... 179
   8.2  The Fourier transform of a projection is a central
        section ............................................... 180
   8.3  Continuous transforms can be inverted by solvent
        flattening ............................................ 182
   8.4  Can the structures of macromolecules be solved at
        atomic resolution by X-ray imaging? ................... 183
   8.5  Solution-scattering patterns provide rotationally
        averaged scattering data .............................. 185
   8.6  Solution-scattering experiments determine length
        distributions and vice versa .......................... 186
   8.7  Molecular weights and radii of gyration are easily
        extracted from solution-scattering profiles ........... 188
   8.8  Solution-scattering profiles are strongly affected
        by the scattering length densities/electron
        densities of solvents ................................. 191
   8.9  Shape scatter dominates most solution-scattering
        curves ................................................ 192
   8.10 Measured radii of gyration are contrast-dependent ..... 194
   8.11 Contrast variation experiments are more easily done
        using neutron radiation than X-rays ................... 195
   8.12 It is surprisingly difficult to compute solution-
        scattering curves ..................................... 196
   8.13 Useful models for the shapes of macromolecules can
        be derived from solution-scattering curves ............ 198
   8.14 The experimental apparatus for small angle
        scattering resembles that used for coherent
        diffractive imaging ................................... 199
   8.15 Molecular weights and radii of gyration can be
        measured by light scattering .......................... 201
   Problems ................................................... 203
   Further Reading ............................................ 204
   Appendix 8.1 Derivation of the Debye equation .............. 204
   Appendix 8.2 Small angle scatter and the radius of
       gyration ............................................... 205

PART FOUR Optical microscopy

9  Image Formation Using Lenses ............................... 209
   9.1  Magnified images of small objects can be produced
        two different ways .................................... 209
   9.2  The direction propagation of light can change at
        index of refraction boundaries ........................ 211
   9.3  In geometrical optics, waves are replaced by rays ..... 212
   9.4  Curved glass surfaces can focus light ................. 213
   9.5  The lens law .......................................... 213
   9.6  The lens law is valid for paraxial skew rays .......... 216
   9.7  Focusing lenses produce images ........................ 217
   9.8  Lens performance is limited by aberration ............. 219
   9.9  Spherical aberration is the most important of the
        Seidel aberrations .................................... 220
   9.10 There are four other Seidel aberrations ............... 222
   9.11 Parallel bundles of rays focus in the back focal
        plane of ideal lenses ................................. 223
   9.12 The light wave in the back focal plane is the
        Fourier transform of the light wave at the object
        plane ................................................. 224
   9.13 As light travels from the back focal plane to the
        image plane it gets Fourier transformed again ......... 226
   9.14 The images of points have the functional form Ji
        (ж)/л: ................................................ 227
   9.15 Rayleigh s criterion is used to estimate the
        resolution of microscopes ............................. 229
   9.16 Microscopes display depth of field and depth of
        focus ................................................. 231
   Problems ................................................... 233
   Further Reading ............................................ 234
   Appendix 9.1 Derivation of the Lens Law .................... 234
   Appendix 9.2 Optical path length and spherical aberration .. 238
   Appendix 9.3 The Fourier transform of a circular aperture .. 241

10 The Light Microscope ....................................... 244
   10.1 Incoherent light is the illumination of choice
        for ordinary microscopy ............................... 244
   10.2 Incoherent image formation is easily described in
        Fourier terms ......................................... 245
   10.3 The Fourier transform of the square of any function
        is the autocorrelation function of its Fourier
        transform ............................................. 248
   10.4 Light absorption accounts for much of the contrast
        in ordinary microscope images ......................... 249
   10.5 Fluorescence plays an increasingly important role in
        biological microscopy ................................. 250
   10.6 Light scattering contributes to image contrast ........ 252
   10.7 Dark field illumination can be used to image objects
        that scatter light .................................... 253
   10.8 Phase objects can be visualized using phase contrast
        microscopy ............................................ 254
   10.9 Confocal microscopy ................................... 256
   10.10 The point spread function of a confocal microscope
         is the product of two objective lens point spread
         functions ............................................ 257
   10.11 Three-dimensional images can be recovered from two-
         dimensional microscopic images ....................... 260
   10.12 Light microscopes can resolve points that are
         closer together than the Rayleigh limit .............. 262
   Problems ................................................... 267
   Further Reading ............................................ 268
   Appendix 10.1 The  distribution  of light  energy
        on-axis, and near-focus ............................... 268

PART FIVE Electron Microscopy

11 Lenses that focus Electrons ................................ 273
   11.1 Biological electron microscopy is done using two
        different kinds of EMs ................................ 274
   11.2 The magnetic field of a one-turn coil can focus
        electrons ............................................. 276
   11.3 The lenses in EMs are solenoids ....................... 279
   11.4 Magnetic lenses have focal lengths .................... 280
   11.5 The optical properties of EMs can be worked out
        using quantum mechanics ............................... 281
   11.6 Aberration seriously degrades the performance of
        magnetic lenses ....................................... 282
   11.7 Spherical aberration limits the resolution of
        magnetic lenses ....................................... 283
   11.8 The resolution of the images produced by lenses that
        have large spherical aberration coefficients can be
        improved by reducing their limiting apertures ......... 284
   11.9 Electron microscopes have large depths of field and
        focus ................................................. 285
   11.10 Focal length variation and spherical aberration are
         important determinants of the contrast transfer
         functions of EMs ..................................... 286
   11.11 Chromatic aberration is a focal length effect ........ 287
   11.12 Chromatic aberration suppresses the high-resolution
         features of images ................................... 288
   11.13 Chromatic aberration has many sources in EMs ......... 288
   11.14 The Scherzer resolution of an image and its
         information limit are not the same ................... 290
   11.15 Both the chromatic and spherical aberration of
         magnetic lenses can be corrected instrumentally ...... 291
   Problems ................................................... 292
   Further Reading ............................................ 292
   Appendix 11.1 On the Chromatic Aberration of Magnetic
         Lenses ............................................... 292

12 Image Formation in the Electron Microscope ................. 294
   12.1 Aperture and phase effects account for most of the
        contrast in EM images ................................. 294
   12.2 Aperture contrast is best understood using cross
        sections .............................................. 295
   12.3 There is little structural information in high angle
        electron scatter ...................................... 296
   12.4 Aperture contrast images have bright backgrounds and
        low resolutions ....................................... 298
   12.5 EM stains enhance aperture contrast ................... 299
   12.6 Inelastic scattering damages specimens ................ 301
   12.7 The phases of electron waves change as they pass
        through objects ....................................... 301
   12.8 TEMs are naturally phase contrast microscopes ......... 303
   12.9 Underfocused images are better than in-focus images ... 304
   12.10 CTFs have a big impact on high-resolution EM images .. 306
   12.11 The CTFs relevant to an EM image can be determined
         after the fact ....................................... 307
   12.12 CTFs can be examined using optical diffractometers ... 309
   12.13 CTF effects can be reversed .......................... 309
   12.14 The transverse coherence of the electron beam
         affects image quality ................................ 312
   12.15 Partial coherence suppresses image detail ............ 313
   12.16 Source brilliance set a practical upper limit on
         transverse coherence ................................. 314
   12.17 The sources used in electron guns differ
         significantly in brilliance .......................... 315
   12.18 Users can control the transverse coherence lengths
         of EM beams .......................................... 315
   Problems ................................................... 316
   Further Reading ............................................ 317
   Appendix 12.1 The effects of thermal motions on molecular
        scattering profiles ................................... 317
   Appendix 12.2 The images of weak-phase objects ............. 319

13 Electron Microscopy in Three Dimensions .................... 320
   13.1 Three-dimensional reconstructions can be done in
        reciprocal space ...................................... 321
   13.2 Interpretable images cannot be obtained by direct
        inversion of central section data sets ................ 322
   13.3 If the transform of an object is known on a lattice
        of appropriate dimensions, its transform can be
        evaluated anywhere in reciprocal space ................ 324
   13.4 В is a product of sine functions ...................... 326
   13.5 F can be estimated by matrix inversion ................ 327
   13.6 Error propagation determines resolution ............... 328
   13.7 Tilt data sets are best described using cylindrical
        polar coordinates ..................................... 329
   13.8 Tilt data can be reduced one plane at a time .......... 330
   13.9 Only a finite number of Gn values that must be taken
        into account in a tomographic reconstruction .......... 332
   13.10 Symmetry reduces the number of images required to
         reconstruct the structure of an object to any given
         resolution ........................................... 334
   13.11 Symmetry determines the orders of the Bessel
         functions that contribute to each layer plane in
         a helical diffraction pattern ........................ 334
   13.12 At modest resolutions, a single Bessel order may
         account for the intensity observed on each plane in
         a helical diffraction pattern ........................ 338
   13.13 The images used for single particle reconstructions
         often have very low signal-to-noise ratios ........... 339
   13.14 Image orientations can be determined by the
         random-conical tilt method ........................... 340
   13.15 Common lines can be used to determine image
         orientations ......................................... 342
   13.16 Orientation refinement is an important part of most
         single particle reconstructions ...................... 343
   13.17 It is easy to validate reconstructions and to
         estimate their resolutions ........................... 344
   Further Reading ............................................ 349
   Appendix T3.1 Solving of least squares problems ............ 349
   Appendix 13.2 Error propagation in linear systems .......... 350
   Appendix 13.3 The Fourier transform in cylindrical
         coordinates .......................................... 352

Index ......................................................... 355


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:24 2019. Размер: 30,789 bytes.
Посещение N 1347 c 17.09.2013