Kloeden P.E. Nonautonomous dynamical systems (Providence, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKloeden P.E. Nonautonomous dynamical systems / P.E.Kloeden, M.Rasmussen. - Providence: American Mathematical Society, 2011. - viii, 264 p.: ill. - (Mathematical surveys and monographs; vol.176). - Bibliogr.: p.253-262. - Ind.: p.263-264. - ISBN 978-0-8218-6871-3
 

Оглавление / Contents
 
Preface ....................................................... vii

Chapter 1  Autonomous dynamical systems ......................... 1
1  Introduction ................................................. 1
2  Local asymptotic behavior .................................... 4
3  Global asymptotic behavior .................................. 12
4  Dependence on parameters .................................... 17

Chapter 2  Nonautonomous dynamical systems ..................... 23
1  Processes formulation ....................................... 23
2  Skew product flow formulation ............................... 26
3  Entire solutions and invariant sets ......................... 31

Chapter 3  Attractors .......................................... 37
1  Attractors of processes ..................................... 38
2  Attractors of skew product flows ............................ 41
3  Existence of pullback attractors ............................ 44
4  Relationship between nonautonomous attractors ............... 52
5  Upper semi-continuous dependence on parameters .............. 55
6  Parametrically inflated pullback attractors ................. 57
7  Pullback attractors with continuous fibers .................. 60
8  Local attractors and repellers .............................. 62

Chapter 4  Morse decompositions ................................ 69
1  Attractor-repeller pairs .................................... 69
2  Morse decompositions ........................................ 72
3  The one-dimensional case .................................... 75

Chapter 5  Linear systems ...................................... 79
1  Exponential dichotomy ....................................... 79
2  Dichotomy spectrum .......................................... 82
3  Lyapunov spectrum ........................................... 87
4  Morse decompositions ........................................ 89

Chapter 6  Invariant manifolds ................................ 105
1  Global invariant manifolds ................................. 105
2  Local invariant manifolds .................................. 112
3  Hierarchies of invariant manifolds ......................... 114
4  Taylor approximation ....................................... 116
5  Reduction principle ........................................ 123

Chapter 7  Lyapunov functions ................................. 129
1  Lyapunov functions for solutions ........................... 129
2  Lyapunov functions for autonomous attractors ............... 132
3  Lyapunov functions for pullback attractors ................. 135
4  Lyapunov functions for Morse decompositions ................ 143

Chapter 8  Bifurcations ....................................... 147
1  Nonautonomous Bernoulli equations .......................... 147
2  One-dimensional bifurcation patterns ....................... 149
3  Higher-dimensional Bernoulli-like equations ................ 157
4  Further developments ....................................... 163

Chapter 9  Set-valued nonautonomous dynamical systems ......... 169
1  Set-valued processes ....................................... 170
2  Set-valued skew product flows .............................. 173
3  Backward extension of autonomous semi-dynamical systems .... 175
4  Proof of existence of nonautonomous invariant sets ......... 178

Chapter 10 Nonautonomous semi-dynamical systems ............... 185
1  Attractors of skew product semi-flows ...................... 185
2  The twisted horseshoe mapping .............................. 189

Chapter 11 Approximation and perturbation of attractors ....... 191
1  Nonautonomous perturbations of an autonomous system ........ 191
2  Numerical approximation of uniform attractors .............. 193
3  Perturbation of the driving system ......................... 197

Chapter 12 Infinite-dimensional systems ....................... 205
1  Squeezing and flattening properties: the autonomous case ... 205
2  Pullback asymptotic compactness ............................ 207

Chapter 13  Switching and control systems ..................... 213
1  Switching systems .......................................... 213
2  Affine control systems ..................................... 222

Chapter 14  Random dynamical systems .......................... 227
1  Random attractors .......................................... 228
2  The Ornstein-Uhlenbeck process ............................. 229
3  Random attractors for stochastic differential equations .... 231

Chapter 15  Synchronization ................................... 235
1  Deterministic nonautonomous systems ........................ 235
2  Synchronization of systems with additive noise ............. 242
3  Synchronization of systems with linear noise ............... 247

Appendix ...................................................... 251
Bibliography .................................................. 253
Index ......................................................... 263


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:22 2019. Размер: 8,789 bytes.
Посещение N 1407 c 17.09.2013