Billingsley P. Probability and measure (Hoboken, 1989 (2012)). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBillingsley P. Probability and measure. - Hoboken: Wiley, 1989 (2012). - xvii, 624 p.: ill. - (Wiley series in probability and statistics). - Bibliogr.: p.617-616. - Ind.: p.619-624. - ISBN 978-1-118-12237-2
 

Оглавление / Contents
 
FOREWORD ....................................................... xi
PREFACE ...................................................... xiii
Patrick Billingsley 1925-2011 .................................. xv

Chapter 1  PROBABILITY .......................................... 1
1  BOREL'S NORMAL NUMBER THEOREM ................................ 1
   The Unit Interval - The Weak Law of Large Numbers - The
   Strong Law of Large Numbers - Strong Law Versus Weak-Length -
   The Measure Theory of Diophantine Approximation
2  PROBABILITY MEASURES ........................................ 18
   Spaces - Assigning Probabilities - Classes of Sets -
   Probability Measures-Lebesgue Measure on the Unit
   Interval - Sequence Space - Constructing σ-Fields
3  EXISTENCE AND EXTENSION ..................................... 39
   Construction of the Extension-Uniqueness and the π-λ
   Theorem - Monotone Classes - Lebesgue Measure on the Unit
   Interval - Completeness - Nonmeasurable Sets - Two
   Impossibility Theorems
4  DENUMERABLE PROBABILITIES ................................... 53
   General Formulas - Limit Sets - Independent Events -
   Subfields - The Borel-Cantelli Lemmas - The Zero - One Law
5  SIMPLE RANDOM VARIABLES ..................................... 72
   Definition - Convergence of Random Variables -
   Independence - Existence of Independent Sequences -
   Expected Value - Inequalities Asterisks indicate topics
   that may be omitted on a first reading.
6  THE LAW OF LARGE NUMBERS .................................... 90
   The Strong Law - The Weak Law - Bernstein's Theorem -
   A Refinement of the Second Borel - Cantelli Lemma
7  GAMBLING SYSTEMS ............................................ 98
   Gambler's Ruin - Selection Systems-Gambling Policies-Bold
   Play - Timid Play
8  MARKOV CHAINS .............................................. 117
   Definitions - Higher-Order Transitions - An Existence
   Theorem - Transience and Persistence - Another Criterion
   for Persistence - Stationary Distributions - Exponential
   Convergence - Optimal Stopping
9  LARGE DEVIATIONS AND THE LAW OF THE ITERATED LOGARITHM ..... 154
   Moment Generating Functions - Large Deviations -
   Chernoff's Theorem - The Law of the Iterated Logarithm

Chapter 2  MEASURE  ........................................... 167
10 GENERAL MEASURES ........................................... 167
   Classes of Sets-Conventions Involving oo-Measures-
   Uniqueness
11 OUTER MEASURE .............................................. 174
   Outer Measure - Extension - An Approximation Theorem
12 MEASURES IN EUCLIDEAN SPACE ................................ 181
   Lebesgue Measure - Regularity - Specifying Measures on
   the Line - Specifying Measures in Rk - Strange Euclidean
   Sets
13 MEASURABLE FUNCTIONS AND MAPPINGS .......................... 192
   Measurable Mappings - Mappings into Rk - Limits and
   Measurability - Transformations of Measures
14 DISTRIBUTION FUNCTIONS ..................................... 198
   Distribution Functions - Exponential Distributions - Weak
   Convergence - Convergence of Types - Extremal
   Distributions

Chapter 3  INTEGRATION ........................................ 211
15 THE INTEGRAL ............................................... 211
   Definition-Nonnegative Functions-Uniqueness
16 PROPERTIES OF THE INTEGRAL ................................. 218
   Equalities and Inequalities-Integration to the Limit -
   Integration over Sets - Densities - Change of Variable -
   Uniform Integrability - Complex Functions
17 THE INTEGRAL WITH RESPECT TO LEBESGUE MEASURE .............. 234
   The Lebesgue Integral on the Line - The Riemann Integral -
   The Fundamental Theorem of Calculus - Change of Variable -
   The Lebesgue Integral in Rk - Stieltjes Integrals
18 PRODUCT MEASURE AND FUBINI'S THEOREM ....................... 245
   Product Spaces - Product Measure - Fubini's Theorem -
   Integration by Parts - Products of Higher Order
19 THE Lp SPACES .............................................. 256
   Definitions - Completeness and Separability - Conjugate
   Spaces - Weak Compactness - Some Decision Theory - The
   Space L2 - An Estimation Problem

Chapter 4  RANDOM VARIABLES AND EXPECTED VALUES ............... 271
20 RANDOM VARIABLES AND DISTRIBUTIONS ......................... 271
   Random Variables and Vectors - Subf ields -
   Distributions - Multidimensional Distributions -
   Independence - Sequences of Random Variables -
   Convolution - Convergence in Probability - The Glivenko-
   Cantelli Theorem
21 EXPECTED VALUES ............................................ 291
   Expected Value as Integral - Expected Values and Limits -
   Expected Values and Distributions - Moments -
   Inequalities - Joint Integrals - Independence and
   Expected Value - Moment Generating Functions
22 SUMS OF INDEPENDENT RANDOM VARIABLES ....................... 300
   The Strong Law of Large Numbers - The Weak Law and Moment
   Generating Functions - Kolmogorov's Zero-One Law - Maximal
   Inequalities - Convergence of Random Series - Random
   Taylor Series
23 THE POISSON PROCESS ........................................ 316
   Characterization of the Exponential Distribution - The
   Poisson Process - The Poisson Approximation - Other
   Characterizations of the Poisson Process - Stochastic
   Processes
24 THE ERGODIC THEOREM ........................................ 330
   Measure-Preserving Transformations - Ergodicity -
   Ergodicity of Rotations - Proof of the Ergodic Theorem -
   The Continued-Fraction Transformation - Diophantine
   Approximation

Chapter 5  CONVERGENCE OF DISTRIBUTIONS ....................... 349
25 WEAK CONVERGENCE ........................................... 349
   Definitions - Uniform Distribution Modulo 1 -
   Convergence in Distribution - Convergence in Probability
   - Fundamental Theorems - Helly's Theorem  - Integration
   to the Limit
26 CHARACTERISTIC FUNCTIONS ................................... 365
   Definition  - Moments and Derivatives - Independence -
   Inversion and the Uniqueness Theorem - The Continuity
   Theorem  -  Fourier Series
27 THE CENTRAL LIMIT THEOREM .................................. 380
   Identically Distributed Summands - The Lindeberg and
   Lyapounov Theorems - Dependent Variables
28 INFINITELY DIVISIBLE DISTRIBUTIONS ......................... 394
   Vague Convergence - The Possible Limits - Characterizing
   the Limit
29 LIMIT THEOREMS IN Rk ....................................... 402
   The Basic Theorems - Characteristic Functions - Normal
   Distributions in Rk - The Central Limit Theorem
30 THE METHOD OF MOMENTS ...................................... 412
   The Moment Problem  - Moment Generating Functions -
   Central Limit Theorem by Moments - Application
to Sampling Theory - Application to Number Theory

Chapter 6  DERIVATIVES AND CONDITIONAL PROBABILITY ............ 425
31 DERIVATIVES ON THE LINE .................................... 425
   The Fundamental Theorem of Calculus - Derivatives of
   Integrals - Singular Functions - Integrals of Derivatives
   - Functions of Bounded Variation
32 THE RADON-NIKODYM THEOREM .................................. 446
   Additive Set Functions - The Hahn Decomposition -
   Absolute Continuity and Singularity - The Main Theorem
33 CONDITIONAL PROBABILITY .................................... 454
   The Discrete Case - The General Case - Properties of
   Conditional Probability - Difficulties and Curiosities -
   Conditional Probability Distributions
34 CONDITIONAL EXPECTATION .................................... 472
   Definition  - Properties of Conditional Expectation -
   Conditional Distributions and Expectations - Sufficient
   Subfields  -  Minimum-Variance Estimation
35 MARTINGALES ................................................ 487
   Definition - Submartingales - Gambling  -  Functions of
   Martingales - Stopping Times - Inequalities - Convergence
   Theorems - Applications: Derivatives - Likelihood Ratios
   - Reversed Martingales - Applications: de Finetti's
   Theorem  -  Bayes Estimation - A Central Limit Theorem

Chapter 7  STOCHASTIC PROCESSES ............................... 513
36 KOLMOGOROV'S EXISTENCE THEOREM ............................. 513
   Stochastic Processes - Finite-Dimensional Distributions -
   Product Spaces - Kolmogorov's Existence Theorem - The
   Inadequacy of fig.1T - A Return to Ergodic Theory - The
   Hewitt-Savage Theorem
37 BROWNIAN MOTION ............................................ 530
   Definition - Continuity of Paths - Measurable Processes -
   Irregularity of Brownian Motion Paths - The Strong Markov
   Property - The Reflection Principle - Skorohod Embedding
   - Invariance
38 NONDENUMERABLE PROBABILITIES ............................... 558
   Introduction - Definitions - Existence Theorems -
   Consequences of Separability

APPENDIX ...................................................... 571
NOTES ON THE PROBLEMS ......................................... 587
BIBLIOGRAPHY .................................................. 617
INDEX ......................................................... 619


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:22 2019. Размер: 13,120 bytes.
Посещение N 1512 c 17.09.2013