Preface ...................................................... xiii
Acknowledgment from I.T. ...................................... xix
1 Plasmonic Enhancement of Optical Properties
by Isolated and Coupled Metal Nanoparticles .................. 1
1 Introduction .............................................. 2
2 Optical Enhancement due to Isolated Metal Nanospheres ..... 4
2.1 Surface plasmon modes of an isolated metal sphere .... 4
2.2 Absorption enhancement .............................. 10
2.3 Electroluminescence enhancement ..................... 15
2.4 Photoluminescence enhancement ....................... 22
3 Enhancement due to Coupled Metal Nanoparticles ........... 26
3.1 Coupled mode theory ................................. 28
3.2 Solution for the field enhancement .................. 32
3.3 Enhancement results and discussion .................. 34
4 Implications ............................................. 39
2 Chiral Photonic and Plasmonic Structures .................... 45
1 Introduction ............................................. 45
2 Transfer Matrix Method for Anisotropic Medium ............ 48
3 Chiral Media from Discrete Screw Operations .............. 50
4 Chiral Media from Continuous Screw Operation ............. 60
5 Conclusions .............................................. 64
3 Multipole Metamaterials ..................................... 67
1 Introduction ............................................. 68
2 Spatial Averaging for Meta-Molecules — Recalling
the Role of Multipole Moments ............................ 68
3 Light Propagation in Metamaterials Including Multipole
Moments Up to the Second Order ........................... 78
4 Multipolar Properties of Planar Meta-Molecules ........... 87
5 Multipole Near-Field Decomposition for Meta-Molecules .... 94
6 Summary and Outlook ...................................... 96
4 Amplification and Lasing with Surface-Plasmon Polaritons ... 101
1 Introduction ............................................ 101
2 Planar Metallic Surfaces ................................ 102
2.1 Single metal-dielectric interface .................. 103
2.2 Thin metal film/stripe ............................. 110
2.3 Metal-insulator-metal structure .................... 116
3 Metallic Nanocavities ................................... 117
4 Metallic Nanoparticles .................................. 119
5 Concluding Remarks ...................................... 120
5 Wavefront Engineering of Quantum Cascade Lasers Using
Plasmonics ................................................. 123
1 Introduction ............................................ 124
1.1 Surface plasmons and Zenneck waves ................. 124
1.2 Quantum design and waveguide design of quantum
cascade lasers ..................................... 125
2 Methods to Tailor the Dispersion Properties of Mid-IR
and THz Surface Plasmon Polaritons ...................... 128
3 One-Dimensional Collimators for Mid-IR QCLs ............. 133
4 Two-Dimensional Collimators for Mid-IR QCLs ............. 138
5 Multi-Beam QCLs ......................................... 140
6 Mid-IR QCLs with Integrated Plasmonic Polarizers ........ 143
7 Bean Shaping of THz QCLs Using Plasmonics ............... 147
7.1 Semiconductor plasmonic second-order grating
collimator for THz QCLs ............................ 147
7.2 Metasurface collimator for THz QCLs ................ 149
7.3 Reduction of the lateral beam divergence ........... 156
7.4 T Metasurface lens ................................. 158
8 Conclusions and Future Perspectives ..................... 159
6 Plasmonics for Ultrasensitive Nanospectroscopy and
Optofluidic-Plasmonics Biosensors .......................... 167
1 Introduction ............................................ 168
1.1 Plasmonic nano-biosensors .......................... 169
2 Mid-Infrared Plasmonics for Ultrasensitive
Nanospectroscopy ........................................ 172
2.1 Radiative engineering with collective plasmons
on antenna arrays .................................. 173
2.2 Collectively enhanced infrared absorption
spectroscopy ....................................... 177
3 High Throughput Fabrication of Plasmonics with
Nanostencil Lithography ................................. 180
3.1 Nanostencil lithography technique .................. 181
3.2 High quality plasmonic resonances with NSL ......... 182
3.3 High throughput nanofabrication with NSL ........... 184
4 Integrated Nanoplasmonic-Nanofluidic Biosensors
Molding the Flow of Light and Fluidics .................. 185
4.1 Targeted versus conventional fluidics .............. 187
4.2 Lift-off fabrication of plasmonic nanohole arrays .. 188
4.3 Active analyte delivery with sub-wavelength
fluidics ........................................... 189
5 Conclusion and Outlook .................................. 190
7 Long-Range Surface Plasmon Polariton Waveguides and
Devices .................................................... 197
1 Introduction ............................................ 198
2 Dispersion Relations, Field Confinement and
Propagation Loss ........................................ 200
3 Fabrication ............................................. 207
3.1 Metal stripe LRSPP waveguides ...................... 207
3.2 Nanowire plasmonic waveguides ...................... 209
3.3 Ultra-thin LRSPP waveguides with fluorescent
polymer cladding ................................... 211
4 Optical Properties ...................................... 213
4.1 Waveguide properties ............................... 213
4.2 LRSPP mode coupling ................................ 215
4.3 Reflection gratings ................................ 218
4.4 Interferometric devices ............................ 221
4.5 Extinction modulators .............................. 224
4.6 LRSPP amplification ................................ 225
5 Conclusions and Outlook ................................. 227
8 Surface Plasmon Biosensing with 3D Plasmonic Crystals ...... 231
1 Introduction ............................................ 231
1.1 Label-free sensing ................................. 232
1.2 Surface plasmon sensing ............................ 232
2 Engineered Surfaces for Biosensing: Plasmonic Crystals
with 3D Unit Cells ...................................... 238
3 Bulk Refractive Index Sensitivity and Dependence
on Angle of Incidence ................................... 239
4 Molecular Sensing Using 3D Plasmonic Crystals ........... 242
4.1 Nanopyramidal gratings: sensing under reflection
conditions ......................................... 242
4.2 3D Nanohole arrays: sensing under transmission
conditions ......................................... 244
5 Biosensing with 3D Plasmonic Crystals in Real-Time ...... 246
6 Conclusions and Outlook ................................. 249
9 Tunable and Active Optical Negative Index Metamaterials .... 255
1 Introduction ............................................ 255
2 Negative Index Metamaterials in the Optical Range ....... 257
2.1 Sample fabrication ................................. 258
2.2 Simulations ........................................ 261
3 Active Optical Negative Index Metamaterials ............. 263
3.1 Sample fabrication ................................. 265
3.2 Sample characterization ............................ 268
3.3 Simulations ........................................ 270
4 Tunable Optical Metamaterials ........................... 275
4.1 Sample fabrication ................................. 276
4.2 Tunable behavior ................................... 279
4.3 Simulations ........................................ 280
5 Conclusions and Outlook ................................. 281
10 Manipulation of Plasmonics from Nano to Micro Scale ........ 285
1 Introduction ............................................ 285
2 Form-Birefringent Metal and Its Plasmonic Anisotropy .... 286
3 Plasmonic Photonic Crystal .............................. 290
4 Fourier Plasmonics ...................................... 294
5 Nanoscale Optical Field Localization .................... 297
6 Conclusions and Outlook ................................. 301
11 Dielectric-Loaded Plasmonic Waveguide Components ........... 305
1 Introduction ............................................ 306
2 Design of Waveguide Dimensions .......................... 307
2.1 Mode confinement and propagation loss .............. 308
3 Sample Preparation and Near-Field Characterization ...... 310
3.1 Sample configuration and fabrication method ........ 310
3.2 Near-field imaging of DLSPPW components ............ 311
4 Excitation and Propagation of Guided Modes .............. 313
4.1 Mode confinement and propagation loss .............. 314
5 Waveguide Bends and Splitters ........................... 316
6 Coupling between Waveguides ............................. 319
6.1 Near-field characterization ........................ 323
6.2 Design of wavelength selective DC .................. 326
7 Waveguide-Ring Resonators ............................... 327
8 Bragg Gratings .......................................... 329
9 Discussion .............................................. 331
12 Manipulating Nanoparticles and Enhancing Spectroscopy
with Surface Plasmons ...................................... 335
1 Introduction ............................................ 335
2 Propulsion of Gold Nanoparticles with Surface Plasmon
Polaritons .............................................. 337
3 Double Resonance Substrates for Surface-Enhanced
Raman Spectroscopy ...................................... 344
4 Conclusions and Outlook ................................. 352
13 Analysis of Light Scattering by Nanoobjects on a Plane
Surface via Discrete Sources Method ........................ 355
1 Introduction ............................................ 356
2 Light Scattering by a Nanorod ........................... 358
2.1 Introduction ....................................... 358
2.2 Asymmetrical DSM model for nanorod ................. 358
2.3 DSM numerical scheme ............................... 362
2.4 Numerical results .................................. 365
2.5 Conclusion ......................................... 371
3 Light Scattering by a Nanoshell ......................... 372
3.1 Introduction ....................................... 372
3.2 DSM model for nanoshell ............................ 372
3.3 Numerical scheme of the DSM ........................ 377
3.4 Results and discussion ............................. 379
3.5 Conclusion ......................................... 385
4 Summary ................................................. 386
14 Computational Techniques for Plasmonic Antennas
and Waveguides ............................................. 389
1 Introduction ............................................ 389
2 Time Domain Solvers ..................................... 392
2.1 Eigenvalue problems ................................ 393
2.2 Dispersive materials ............................... 393
2.3 Periodic symmetries ................................ 394
2.4 Grid refinement .................................... 395
2.5 Finite differences and finite integrals ............ 396
2.6 Finite volume ...................................... 396
2.7 FEM and DG-FEM ..................................... 397
3 Frequency Domain Solvers ................................ 398
3.1 Finite differences ................................. 399
3.2 Finite elements .................................... 400
3.3 Method of moments .................................. 401
3.4 BEM ................................................ 402
3.5 Semi-analytic boundary discretization .............. 402
4 Plasmonic Antennas ...................................... 404
4.1 Metallic patch antenna with small groove ........... 406
4.2 Axisymmetric antenna structures .................... 407
4.3 Chains of plasmonic particles ...................... 411
5 Plasmonic Waveguides .................................... 419
5.1 Axisymmetric, cylindrical waveguide ................ 421
5.2 Non-axisymmetric, cylindrical waveguide ............ 424
5.3 Periodic, cylindrical waveguide .................... 428
5.4 Periodic, axisymmetric waveguide ................... 429
6 Advanced Structures ..................................... 432
7 Conclusions ............................................. 436
Index ......................................................... 441
|