Kleinert H. Path integrals in quantum mechanics, statistics, polymer physics, and financial markets (New Jersey, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKleinert H. Path integrals in quantum mechanics, statistics, polymer physics, and financial markets. - New Jersey: World Scientific, 2009. - xliii, 1579 p.: ill. - ISBN-10 981-4273-56-2; ISBN-13 978-981-4273-56-5
 

Место хранения: 016 | Библиотека Института ядерной физики СО РАН | Новосибирск

Оглавление / Contents
 
Preface ....................................................... vii
Preface to Fourth Edition .................................... viii
Preface to Third Edition ....................................... ix
Preface to Second Edition ...................................... xi
Preface to First Edition ..................................... xiii
1  Fundamentals ................................................. 1
   1.1  Classical Mechanics ..................................... 1
   1.2  Relativistic Mechanics in Curved Spacetime ............. 10
   1.3  Quantum Mechanics ...................................... 11
        1.3.1  Bragg Reflections and Interference .............. 12
        1.3.2  Matter Waves .................................... 13
        1.3.3  Schrödinger Equation ............................ 15
        1.3.4  Particle Current Conservation ................... 17
   1.4  Dirac's Bra-Ket Formalism .............................. 18
        1.4.1  Basis Transformations ........................... 18
        1.4.2  Bracket Notation ................................ 20
        1.4.3  Continuum Limit ................................. 22
        1.4.4  Generalized Functions ........................... 23
        1.4.5  Schrödinger Equation in Dirac Notation .......... 25
        1.4.6  Momentum States ................................. 26
        1.4.7  Incompleteness and Poisson's Summation
               Formula ......................................... 28
   1.5  Observables ............................................ 31
        1.5.1  Uncertainty Relation ............................ 32
        1.5.2  Density Matrix and Wigner Function .............. 33
        1.5.3  Generalization to Many Particles ................ 34
   1.6  Time Evolution Operator ................................ 34
   1.7  Properties of the Time Evolution Operator .............. 37
   1.8  Heisenberg Picture of Quantum Mechanics ................ 39
   1.9  Interaction Picture and Perturbation Expansion ......... 42
   1.10 Time Evolution Amplitude ............................... 43
   1.11 Fixed-Energy Amplitude ................................. 45
   1.12 Free-Particle Amplitudes ............................... 47
   1.13 Quantum Mechanics of General Lagrangian Systems ........ 51
   1.14 Particle on the Surface of a Sphere .................... 57
   1.15 Spinning Top ........................................... 59
   1.16 Scattering ............................................. 67
        1.16.1  Scattering Matrix .............................. 67
        1.16.2  Cross Section .................................. 68
        1.16.3  Born Approximation ............................. 70
        1.16.4  Partial Wave Expansion and Eikonal
                Approximation .................................. 70
        1.16.5  Scattering Amplitude from Time Evolution
                Amplitude ...................................... 72
        1.16.6  Lippmann-Schwinger Equation .................... 72
   1.17  Classical and Quantum Statistics ...................... 76
        1.17.1  Canonical Ensemble ............................. 77
        1.17.2  Grand-Canonical Ensemble ....................... 77
        1.18  Density of States and Tracelog ................... 82
        Appendix 1A  Simple Time Evolution Operator ............ 84
        Appendix IB  Convergence of the Fresnel Integral ....... 84
        Appendix 1С  The Asymmetric Top ........................ 85
        Notes and References ................................... 87
2  Path Integrals — Elementary Properties and Simple
   Solutions ................................................... 89
   2.1  Path Integral Representation of Time Evolution
        Amplitudes ............................................. 89
        2.1.1  Sliced Time Evolution Amplitude ................. 89
        2.1.2  Zero-Hamiltonian Path Integral .................. 91
        2.1.3  Schrödinger Equation for Time Evolution
               Amplitude ....................................... 92
        2.1.4  Convergence of of the Time-Sliced Evolution
               Amplitude ....................................... 93
        2.1.5  Time Evolution Amplitude in Momentum Space ...... 94
        2.1.6  Quantum-Mechanical Partition Function ........... 96
        2.1.7  Feynman's Configuration Space Path Integral ..... 97
   2.2  Exact Solution for the Free Particle .................. 101
        2.2.1  Direct Solution ................................ 101
        2.2.2  Fluctuations around the Classical Path ......... 102
        2.2.3  Fluctuation Factor ............................. 104
        2.2.4  Finite Slicing Properties of Free-Particle
               Amplitude ...................................... 111
   2.3  Exact Solution for Harmonic Oscillator ................ 112
        2.3.1  Fluctuations around the Classical Path ......... 112
        2.3.2  Fluctuation Factor ............................. 114
        2.3.3  The iη-Prescription and Maslov-Morse Index ..... 115
        2.3.4  Continuum Limit ................................ 116
        2.3.5  Useful Fluctuation Formulas .................... 117
        2.3.6  Oscillator Amplitude on Finite Time Lattice .... 119
   2.4  Gelfand-Yaglom Formula ................................ 120
        2.4.1  Recursive Calculation of Fluctuation
               Determinant .................................... 121
        2.4.2  Examples ....................................... 121
        2.4.3  Calculation on Unsliced Time Axis .............. 123
        2.4.4  D'Alembert's Construction ...................... 124
        2.4.5  Another Simple Formula ......................... 125
        2.4.6  Generalization to D Dimensions ................. 127
   2.5  Harmonic Oscillator with Time-Dependent Frequency ..... 127
        2.5.1  Coordinate Space ............................... 128
        2.5.2  Momentum Space ................................. 130
   2.6  Free-Particle and Oscillator Wave Functions ........... 132
   2.7  General Time-Dependent Harmonic Action ................ 134
   2.8  Path Integrals and Quantum Statistics ................. 135
   2.9  Density Matrix ........................................ 138
   2.10 Quantum Statistics of the Harmonic Oscillator ......... 143
   2.11 Time-Dependent Harmonic Potential ..................... 148
   2.12 Functional Measure in Fourier Space ................... 151
   2.13 Classical Limit ....................................... 154
   2.14 Calculation Techniques on Sliced Time Axis via the
        Poisson Formula ....................................... 155
   2.15 Field-Theoretic Definition of Harmonic Path
        Integrals by Analytic Regularization .................. 158
        2.15.1 Zero-Temperature Evaluation of the
               Frequency Sum .................................. 159
        2.15.2 Finite-Temperature Evaluation of the Frequency
               Sum ............................................ 162
        2.15.3 Quantum-Mechanical Harmonic Oscillator ......... 164
        2.15.4 Tracelog of the First-Order Differential
               Operator ....................................... 165
        2.15.5 Gradient Expansion of the One-Dimensional
               Tracelog ....................................... 167
        2.15.6 Duality Transformation and Low-Temperature
               Expansion ...................................... 168
   2.16 Finite-JV Behavior of Thermodynamic Quantities ........ 175
   2.17 Time Evolution Amplitude of Freely Palling Particle ... 177
   2.18 Charged Particle in Magnetic Field .................... 179
        2.18.1 Action ......................................... 179
        2.18.2 Gauge Properties ............................... 182
        2.18.3 Time-Sliced Path Integration ................... 182
        2.18.4 Classical Action ............................... 184
        2.18.5 Translational Invariance ....................... 185
   2.19 Charged Particle in Magnetic Field plus Harmonic
        Potential ............................................. 186
   2.20 Gauge Invariance and Alternative Path Integral
        Representation ........................................ 188
   2.21 Velocity Path Integral ................................ 189
   2.22 Path Integral Representation of the Scattering
        Matrix ................................................ 190
        2.22.1 General Development ............................ 190
        2.22.2 Improved Formulation ........................... 193
        2.22.3 Eikonal Approximation to the Scattering
               Amplitude ...................................... 194
   2.23 Heisenberg Operator Approach to Time Evolution
        Amplitude ............................................. 194
        2.23.1 Free Particle .................................. 195
        2.23.2 Harmonic Oscillator ............................ 197
        2.23.3 Charged Particle in Magnetic Field ............. 197
   Appendix 2A  Вакег-Campbell-Hausdorff Formula and
        Magnus Expansion ...................................... 201
   Appendix 2B  Direct Calculation of the Time-Sliced
        Oscillator Amplitude .................................. 204
   Appendix 2C  Derivation of Mehler Formula .................. 205
   Notes and References ....................................... 206
3  External Sources, Correlations, and Perturbation Theory .... 209
   3.1  External Sources ...................................... 209
   3.2  Green Function of Harmonic Oscillator ................. 213
        3.2.1  Wronski Construction ........................... 213
        3.2.2  Spectral Representation ........................ 217
   3.3  Green Functions of First-Order Differential Equation .. 219
        3.3.1  Time-Independent Frequency ..................... 219
        3.3.2  Time-Dependent Frequency ....................... 226
   3.4  Summing Spectral Representation of Green Function ..... 229
   3.5  Wronski Construction for Periodic and Antiperiodic
        Green Functions ....................................... 231
   3.6  Time Evolution Amplitude in Presence of Source Term ... 232
   3.7  Time Evolution Amplitude at Fixed Path Average ........ 236
   3.8  External Source in Quantum-Statistical Path Integral .. 237
        3.8.1  Continuation of Real-Time Result ............... 238
        3.8.2  Calculation at Imaginary Time .................. 242
   3.9  Lattice Green Function ................................ 249
   3.10 Correlation Functions, Generating Functional, and
        Wick Expansion ........................................ 249
        3.10.1  Real-Time Correlation Functions ............... 252
   3.11 Correlation Functions of Charged Particle in
        Magnetic Field ........................................ 254
   3.12 Correlation Functions in Canonical Path Integral ...... 255
        3.12.1 Harmonic Correlation Functions ................. 256
        3.12.2 Relations between Various Amplitudes ........... 258
        3.12.3 Harmonic Generating Functional ................. 259
   3.13 Particle in Heat Bath ................................. 262
   3.14 Heat Bath of Photons .................................. 266
   3.15 Harmonic Oscillator in Ohmic Heat Bath ................ 268
   3.16 Harmonic Oscillator in Photon Heat Bath ............... 271
   3.17 Perturbation Expansion of Anharmonic Systems .......... 272
   3.18 Rayleigh-Schrödinger and Brillouin-Wigner
        Perturbation Expansion ................................ 276
   3.19 Level-Shifts and Perturbed Wave Functions from
        Schrödinger Equation .................................. 280
   3.20 Calculation of Perturbation Series via Feynman
        Diagrams .............................................. 282
   3.21 Perturbative Definition of Interacting Path
        Integrals ............................................. 287
   3.22 Generating Functional of Connected Correlation
        Functions ............................................. 288
        3.22.1 Connectedness Structure of Correlation
               Functions ...................................... 289
        3.22.2 Correlation Functions versus Connected
               Correlation Functions .......................... 292
        3.22.3 Functional Generation of Vacuum Diagrams ....... 294
        3.22.4 Correlation Functions from Vacuum Diagrams ..... 298
        3.22.5 Generating Functional for Vertex Functions.
               Effective Action ............................... 300
        3.22.6 Ginzburg-Landau Approximation to Generating
               Functional ..................................... 305
        3.22.7 Composite Fields ............................... 306
   3.23 Path Integral Calculation of Effective Action by
        Loop Expansion ........................................ 307
        3.23.1 General Formalism .............................. 307
        3.23.2 Mean-Field Approximation ....................... 308
        3.23.3 Corrections from Quadratic Fluctuations ........ 312
        3.23.4 Effective Action to Second Order in h .......... 315
        3.23.5 Finite-Temperature Two-Loop Effective Action ... 319
        3.23.6 Background Field Method for Effective Action ... 321
   3.24 Nambu-Goldstone Theorem ............................... 324
   3.25 Effective Classical Potential ......................... 326
        3.25.1 Effective Classical Boltzmann Factor ........... 327
        3.25.2 Effective Classical Hamiltonian ................ 330
        3.25.3 High- and Low-Temperature Behavior ............. 331
        3.25.4 Alternative Candidate for Effective Classical
               Potential ...................................... 332
        3.25.5 Harmonic Correlation Function without Zero
               Mode ........................................... 333
        3.25.6 Perturbation Expansion ......................... 334
        3.25.7 Effective Potential and Magnetization Curves ... 336
        3.25.8 First-Order Perturbative Result ................ 338
        3.26 Perturbative Approach to Scattering Amplitude .... 340
        3.26.1 Generating Functional .......................... 340
        3.26.2 Application to Scattering Amplitude ............ 341
        3.26.3 First Correction to Eikonal Approximation ...... 341
        3.26.4 Rayleigh-Schrödinger Expansion of Scattering
               Amplitude ...................................... 342
        3.27 Functional Determinants from Green Functions ..... 344
   Appendix 3А  Matrix Elements for General Potential ......... 350
   Appendix 3B  Energy Shifts for gx4/4-Interaction ........... 351
   Appendix 3C  Recursion Relations for Perturbation
        Coefficients .......................................... 353
        3C.1  One-Dimensional Interaction x4 .................. 353
        3C.2  General One-Dimensional Interaction ............. 356
        3C.3  Cumulative Treatment of Interactions x4 and x3 .. 356
        3C.4  Ground-State Energy with External Current ....... 358
        3C.5  Recursion Relation for Effective Potential ...... 360
        3C.6  Interaction r4 in D-Dimensional Radial
              Oscillator ...................................... 363
        3C.7  Interaction r2q in D Dimensions ................. 364
        3C.8  Polynomial Interaction in D Dimensions .......... 364
   Appendix 3D  Feynman Integrals for T ≠ 0 ................... 364
   Notes and References ....................................... 367
4  Semiclassical Time Evolution Amplitude ..................... 369
   4.1  Wentzel-Kramers-Brillouin (WKB) Approximation ......... 369
   4.2  Saddle Point Approximation ............................ 376
        4.2.1  Ordinary Integrals ............................. 376
        4.2.2  Path Integrals ................................. 379
   4.3  Van Vleck-Pauli-Morette Determinant ................... 385
   4.4  Fundamental Composition Law for Semiclassical Time
        Evolution Amplitude ................................... 389
   4.5  Semiclassical Fixed-Energy Amplitude .................. 391
   4.6  Semiclassical Amplitude in Momentum Space ............. 393
   4.7  Semiclassical Quantum-Mechanical Partition Function ... 395
   4.8  Multi-Dimensional Systems ............................. 400
   4.9  Quantum Corrections to Classical Density of States .... 405
        4.9.1  One-Dimensional Case ........................... 406
        4.9.2  Arbitrary Dimensions ........................... 408
        4.9.3  Bilocal Density of States ...................... 409
        4.9.4  Gradient Expansion of Tracelog of Hamiltonian
               Operator ....................................... 411
        4.9.5  Local Density of States on Circle .............. 415
        4.9.6  Quantum Corrections to Bohr-Sommerfeld
               Approximation .................................. 416
   4.10 Thomas-Fermi Model of Neutral Atoms ................... 419
        4.10.1 Semiclassical Limit ............................ 419
        4.10.2 Self-Consistent Field Equation ................. 421
        4.10.3 Energy Functional of Thomas-Fermi Atom ......... 423
        4.10.4 Calculation of Energies ........................ 424
        4.10.5 Virial Theorem ................................. 427
        4.10.6 Exchange Energy ................................ 428
        4.10.7 Quantum Correction Near Origin ................. 429
        4.10.8 Systematic Quantum Corrections to Thomas-
               Fermi Energies ................................. 432
   4.11 Classical Action of Coulomb System .................... 436
   4.12 Semiclassical Scattering .............................. 444
        4.12.1 General Formulation ............................ 444
        4.12.2 Semiclassical Cross Section of Mott
               Scattering ..................................... 448
   Appendix 4A  Semiclassical Quantization for Pure Power
        Potentials ............................................ 449
   Appendix 4B  Derivation of Semiclassical Time Evolution
        Amplitude ............................................. 451
        Notes and References .................................. 455
5  Variational Perturbation Theory ............................ 458
   5.1  Variational Approach to Effective Classical
        Partition Function .................................... 458
   5.2  Local Harmonic Trial Partition Function ............... 459
   5.3  Optimal Upper Bound ................................... 464
   5.4  Accuracy of Variational Approximation ................. 465
   5.5  Weakly Bound Ground State Energy in Finite-Range
        Potential Well ........................................ 468
   5.6  Possible Direct Generalizations ....................... 469
   5.7  Effective Classical Potential for Anharmonic
        Oscillator ............................................ 470
   5.8  Particle Densities .................................... 475
   5.9  Extension to D Dimensions ............................. 479
   5.10 Application to Coulomb and Yukawa Potentials .......... 481
   5.11 Hydrogen Atom in Strong Magnetic Field ................ 484
        5.11.1 Weak-Field Behavior ............................ 488
        5.11.2 Effective Classical Hamiltonian ................ 488
   5.12 Variational Approach to Excitation Energies ........... 492
   5.13 Systematic Improvement of Feynman-Kleinert
        Approximation ......................................... 496
   5.14 Applications of Variational Perturbation Expansion .... 498
        5.14.1 Anharmonic Oscillator at T = 0 ................. 499
        5.14.2 Anharmonic Oscillator for T > 0 ................ 501
   5.15 Convergence of Variational Perturbation Expansion ..... 505
   5.16 Variational Perturbation Theory for Strong-Coupling
        Expansion ............................................. 512
   5.17 General Strong-Coupling Expansions .................... 515
   5.18 Variational Interpolation between Weak and Strong-
        Coupling Expansions ................................... 518
   5.19 Systematic Improvement of Excited Energies ............ 520
   5.20 Variational Treatment of Double-Well Potential ........ 521
   5.21 Higher-Order Effective Classical Potential for
        Nonpolynomial Interactions ............................ 523
        5.21.1 Evaluation of Path Integrals ................... 524
        5.21.2 Higher-Order Smearing Formula in D Dimensions .. 525
        5.21.3 Isotropic Second-Order Approximation to
               Coulomb Problem ................................ 527
        5.21.4 Anisotropic Second-Order Approximation to
               Coulomb Problem ................................ 528
        5.21.5 Zero-Temperature Limit ......................... 529
   5.22 Polarons .............................................. 533
        5.22.1 Partition Function ............................. 535
        5.22.2 Harmonic Trial System .......................... 537
        5.22.3 Effective Mass ................................. 542
        5.22.4 Second-Order Correction ........................ 543
        5.22.5 Polaron in Magnetic Field, Bipolarons, etc ..... 544
        5.22.6 Variational Interpolation for Polaron Energy
               and Mass ....................................... 545
   5.23 Density Matrices ...................................... 548
        5.23.1 Harmonic Oscillator ............................ 548
        5.23.2 Variational Perturbation Theory for Density
               Matrices ....................................... 550
        5.23.3 Smearing Formula for Density Matrices .......... 552
        5.23.4 First-Order Variational Approximation .......... 554
        5.23.5 Smearing Formula in Higher Spatial Dimensions .. 558
   Appendix 5A  Feynman Integrals for T ≠ 0 without Zero
        Frequency ............................................. 560
   Appendix 5B  Proof of Scaling Relation for the Extrema
        of Wn ................................................. 562
   Appendix 5C  Second-Order Shift of Polaron Energy .......... 564
   Notes and References ....................................... 565
6  Path Integrals with Topological Constraints ................ 571
   6.1  Point Particle on Circle .............................. 571
   6.2  Infinite Wall ......................................... 575
   6.3  Point Particle in Box ................................. 579
   6.4  Strong-Coupling Theory for Particle in Box ............ 582
        6.4.1  Partition Function ............................. 583
        6.4.2  Perturbation Expansion ......................... 583
        6.4.3  Variational Strong-Coupling Approximations ..... 585
        6.4.4  Special Properties of Expansion ................ 587
        6.4.5  Exponentially Fast Convergence ................. 588
        Notes and References .................................. 589
7  Many Particle Orbits - Statistics and Second Quantization .. 591
   7.1  Ensembles of Bose and Fermi Particle Orbits ........... 592
   7.2  Bose-Einstein Condensation ............................ 599
        7.2.1  Free Bose Gas .................................. 599
        7.2.2  Bose Gas in Finite Box ......................... 607
        7.2.3  Effect of Interactions ......................... 609
        7.2.4  Bose-Einstein Condensation in Harmonic Trap .... 615
        7.2.5  Thermodynamic Functions ........................ 615
        7.2.6  Critical Temperature ........................... 617
        7.2.7  More General Anisotropic Trap .................. 620
        7.2.8  Rotating Bose-Einstein Gas ..................... 621
        7.2.9  Finite-Size Corrections ........................ 622
        7.2.10 Entropy and Specific Heat ...................... 623
        7.2.11 Interactions in Harmonic Trap .................. 626
   7.3  Gas of Free Fermions .................................. 630
   7.4  Statistics Interaction ................................ 635
   7.5  Fractional Statistics ................................. 640
   7.6  Second-Quantized Bose Fields .......................... 641
   7.7  Fluctuating Bose Fields ............................... 644
   7.8  Coherent States ....................................... 650
   7.9  Second-Quantized Fermi Fields ......................... 654
   7.10 Fluctuating Fermi Fields .............................. 654
        7.10.1 Grassmann Variables ............................ 654
        7.10.2 Fermionic Functional Determinant ............... 657
        7.10.3 Coherent States for Fermions ................... 661
   7.11 Hilbert Space of Quantized Grassmann Variable ......... 663
        7.11.1 Single Real Grassmann Variable ................. 663
        7.11.2 Quantizing Harmonic Oscillator with Grassmann
               Variables ...................................... 666
        7.11.3 Spin System with Grassmann Variables ........... 667
   7.12 External Sources in a*, a - Path Integral ............. 672
   7.13 Generalization to Pair Terms .......................... 674
   7.14 Spatial Degrees of Freedom ............................ 676
        7.14.1 Grand-Canonical Ensemble of Particle orbits
               from Free Fluctuating Field .................... 676
        7.14.2 First versus Second Quantization ............... 678
        7.14.3 Interacting Fields ............................. 678
        7.14.4 Effective Classical Field Theory ............... 679
   7.15 Bosonization .......................................... 680
        7.15.1 Collective Field ............................... 682
        7.15.2 Bosonized versus Original Theory ............... 684
   Appendix 7A  Treatment of Singularities in Zeta-Function ... 686
        7A.1  Finite Box ...................................... 687
        7A.2  Harmonic Trap ................................... 689
   Appendix 7B  Experimental versus Theoretical Would-be
        Critical Temperature .................................. 691
        Notes and References .................................. 692
8  Path Integrals in Polar and Spherical Coordinates .......... 697
   8.1  Angular Decomposition in Two Dimensions ............... 697
   8.2  Trouble with Feynman's Path Integral Formula in
        Radial Coordinates .................................... 700
   8.3  Cautionary Remarks .................................... 704
   8.4  Time Slicing Corrections .............................. 707
   8.5  Angular Decomposition in Three and More Dimensions .... 711
        8.5.1  Three Dimensions ............................... 712
        8.5.2  D Dimensions ................................... 714
   8.6  Radial Path Integral for Harmonic Oscillator and
        Free Particle ......................................... 720
   8.7  Particle near the Surface of a Sphere in D
        Dimensions ............................................ 721
   8.8  Angular Barriers near the Surface of a Sphere ......... 724
        8.8.1  Angular Barriers in Three Dimensions ........... 725
        8.8.2  Angular Barriers in Four Dimensions ............ 730
   8.9  Motion on a Sphere in D Dimensions .................... 734
   8.10 Path Integrals on Group Spaces ........................ 739
   8.11 Path Integral of Spinning Top ......................... 741
   8.12 Path Integral of Spinning Particle .................... 743
   8.13 Berry Phase ........................................... 748
   8.14 Spin Precession ....................................... 748
   Notes and References ....................................... 750
9  Wave Functions ............................................. 752
   9.1  Free Particle in D Dimensions ......................... 752
   9.2  Harmonic Oscillator in D Dimensions ................... 755
   9.3  Free Particle from ω → 0 - Limit of Oscillator ........ 761
   9.4  Charged Particle in Uniform Magnetic Field ............ 763
   9.5  Dirac δ-Function Potential ............................ 770
   Notes and References ....................................... 772
10 Spaces with Curvature and Torsion .......................... 773
   10.1 Einstein's Equivalence Principle ...................... 774
   10.2 Classical Motion of Mass Point in General Metric-
        Affine Space .......................................... 775
        10.2.1 Equations of Motion ............................ 775
        10.2.2 Nonholonomic Mapping to Spaces with Torsion .... 778
        10.2.3 New Equivalence Principle ...................... 784
        10.2.4 Classical Action Principle for Spaces with
               Curvature and Torsion .......................... 784
   10.3 Path Integral in Metric-Affine Space .................. 789
        10.3.1 Nonholonomic Transformation of Action .......... 789
        10.3.2 Measure of Path Integration .................... 794
   10.4 Completing the Solution of Path Integral on Surface
        of Sphere ............................................. 800
   10.5 External Potentials and Vector Potentials ............. 802
   10.6 Perturbative Calculation of Path Integrals in Curved
        Space ................................................. 804
        10.6.1 Free and Interacting Parts of Action ........... 804
        10.6.2 Zero Temperature ............................... 807
   10.7 Model Study of Coordinate Invariance .................. 809
        10.7.1 Diagrammatic Expansion ......................... 811
        10.7.2 Diagrammatic Expansion in d Time Dimensions .... 813
   10.8 Calculating Loop Diagrams ............................. 814
        10.8.1 Reformulation in Configuration Space ........... 821
        10.8.2 Integrals over Products of Two Distributions ... 822
        10.8.3 Integrals over Products of Four Distributions .. 823
   10.9 Distributions as Limits of Bessel Function ............ 825
        10.9.1 Correlation Function and Derivatives ........... 825
        10.9.2 Integrals over Products of Two Distributions ... 827
        10.9.3 Integrals over Products of Four Distributions .. 828
   10.10 Simple Rules for Calculating Singular Integrals ...... 830
   10.11 Perturbative Calculation on Finite Time Intervals .... 835
        10.11.1 Diagrammatic Elements ......................... 836
        10.11.2 Cumulant Expansion of D-Dimensional Free-
                Particle Amplitude in Curvilinear
                Coordinates ................................... 837
        10.11.3 Propagator in 1 - ε Time Dimensions ........... 839
        10.11.4 Coordinate Independence for Dirichlet
                Boundary Conditions ........................... 840
        10.11.5 Time Evolution Amplitude in Curved Space ...... 846
        10.11.6 Covariant Results for Arbitrary Coordinates ... 852
   10.12 Effective Classical Potential in Curved Space ........ 857
        10.12.1 Covariant Fluctuation Expansion ............... 858
        10.12.2 Arbitrariness of q0μ .......................... 861
        10.12.3 Zero-Mode Properties .......................... 862
        10.12.4 Covariant Perturbation Expansion .............. 865
        10.12.5 Covariant Result from Noncovariant Expansion .. 866
        10.12.6 Particle on Unit Sphere ....................... 869
   10.13 Covariant Effective Action for Quantum Particle
        with Coordinate-Dependent Mass ........................ 871
        10.13.1 Formulating the Problem ....................... 872
        10.13.2 Gradient Expansion ............................ 875
   Appendix 10A  Nonholonomic Gauge Transformations in
        Electromagnetism ...................................... 875
        10A.1 Gradient Representation of Magnetic Field of
              Current Loops ................................... 876
        10A.2 Generating Magnetic Fields by Multivalued
              Gauge Transformations ........................... 880
        10A.3 Magnetic Monopoles .............................. 881
        10A.4 Minimal Magnetic Coupling of Particles from
              Multivalued Gauge Transformations ............... 883
        10A.5 Gauge Field Representation of Current Loops
              and Monopoles ................................... 884
   Appendix 10B Comparison of Multivalued Basis Tetrads with
        Vierbein Fields ....................................... 886
   Appendix 10C Cancellation of Powers of δ(0) ................ 888
   Notes and References ....................................... 890
11 Schrödinger Equation in General Metric-Affine Spaces ....... 894
   11.1 Integral Equation for Time Evolution Amplitude ........ 894
        11.1.1 From Recursion Relation to Schrödinger
               Equation ....................................... 895
        11.1.2 Alternative Evaluation ......................... 898
   11.2 Equivalent Path Integral Representations .............. 901
   11.3 Potentials and Vector Potentials ...................... 905
   11.4 Unitarity Problem ..................................... 906
   11.5 Alternative Attempts .................................. 909
   11.6 DeWitt-Seeley Expansion of Time Evolution Amplitude ... 910
   Appendix 11A Cancellations in Effective Potential .......... 914
   Appendix 11B DeWitt's Amplitude ............................ 916
   Notes and References ....................................... 917
12 New Path Integral Formula for Singular Potentials .......... 918
   12.1 Path Collapse in Feynman's formula for the Coulomb
        System ................................................ 918
   12.2 Stable Path Integral with Singular Potentials ......... 921
   12.3 Time-Dependent Regularization ......................... 926
   12.4 Relation to Schrödinger Theory. Wave Functions ........ 928
        Notes and References .................................. 930
13 Path Integral of Coulomb System ............................ 931
   13.1 Pseudotime Evolution Amplitude ........................ 931
   13.2 Solution for the Two-Dimensional Coulomb System ....... 933
   13.3 Absence of Time Slicing Corrections for D = 2 ......... 938
   13.4 Solution for the Three-Dimensional Coulomb System ..... 943
   13.5 Absence of Time Slicing Corrections for D = 3 ......... 949
   13.6 Geometrie Argument for Absence of Time Slicing
        Corrections ........................................... 951
   13.7 Comparison with Schrödinger Theory .................... 952
   13.8 Angular Decomposition of Amplitude, and Radial Wave
        Functions ............................................. 957
   13.9 Remarks on Geometry of Four-Dimensional uM-Space ...... 961
   13.10 Runge-Lenz-Pauli Group of Degeneracy ................. 963
   13.11 Solution in Momentum Space ........................... 964
   13.11.1 Another Form of Action ............................. 968
   Appendix 13A  Dynamical Group of Coulomb States ............ 969
   Notes and References ....................................... 972
14 Solution of Further Path Integrals by Duru-Kleinert
   Method ..................................................... 974
   14.1 One-Dimensional Systems ............................... 974
   14.2 Derivation of the Effective Potential ................. 978
   14.3 Comparison with Schrödinger Quantum Mechanics ......... 982
   14.4 Applications .......................................... 983
        14.4.1 Radial Harmonic Oscillator and Morse System .... 983
        14.4.2 Radial Coulomb System and Morse System ......... 985
        14.4.3 Equivalence of Radial Coulomb System and
               Radial Oscillator .............................. 987
        14.4.4 Angular Barrier near Sphere, and Rosen-Morse
               Potential ...................................... 994
        14.4.5 Angular Barrier near Four-Dimensional Sphere,
               and General Rosen-Morse Potential .............. 997
        14.4.6 Hulthйn Potential and General Rosen-Morse
               Potential ..................................... 1000
        14.4.7 Extended Hulthén Potential and General
               Rosen-Morse Potential ......................... 1002
   14.5 D-Dimensional Systems ................................ 1003
   14.6 Path Integral of the Dionium Atom .................... 1004
        14.6.1 Formal Solution ............................... 1005
        14.6.2 Absence of Time Slicing Corrections ........... 1009
   14.7 Time-Dependent Duru-Kleinert Transformation .......... 1012
   Appendix 14A  Affine Connection of Dionium Atom ........... 1015
   Appendix 14B  Algebraic Aspects of Dionium States ......... 1016
   Notes and References ...................................... 1016
15 Path Integrals in Polymer Physics ......................... 1019
   15.1 Polymers and Ideal Random Chains ..................... 1019
   15.2 Moments of End-to-End Distribution ................... 1021
   15.3 Exact End-to-End Distribution in Three Dimensions .... 1024
   15.4 Short-Distance Expansion for Long Polymer ............ 1026
   15.5 Saddle Point Approximation to Three-Dimensional
        End-to-End Distribution .............................. 1028
   15.6 Path Integral for Continuous Gaussian Distribution ... 1029
   15.7 Stiff Polymers ....................................... 1032
        15.7.1  Sliced Path Integral ......................... 1034
        15.7.2 Relation to Classical Heisenberg Model ........ 1035
        15.7.3 End-to-End Distribution ....................... 1037
        15.7.4 Moments of End-to-End Distribution ............ 1037
   15.8 Continuum Formulation ................................ 1038
        15.8.1 Path Integral ................................. 1038
        15.8.2 Correlation Functions and Moments ............. 1039
   15.9 Schrödinger Equation and Recursive Solution for
        Moments .............................................. 1043
        15.9.1 Setting up the Schrödinger Equation ........... 1043
        15.9.2 Recursive Solution of Schrödinger Equation .... 1044
        15.9.3 From Moments to End-to-End Distribution for
               D = 3 ......................................... 1047
        15.9.4 Large-Stiffness Approximation to End-to-End
               Distribution .................................. 1049
        15.9.5 Higher Loop Corrections ....................... 1054
   15.10 Excluded-Volume Effects ............................. 1062
   15.11 Flory's Argument .................................... 1069
   15.12 Polymer Field Theory ................................ 1070
   15.13 Fermi Fields for Self-Avoiding Lines ................ 1077
   Appendix 15A  Basic Integrals ............................. 1078
   Appendix 15B  Loop Integrals .............................. 1079
   Appendix 15C  Integrals Involving Modified Green
         Function ............................................ 1080
   Notes and References ...................................... 1081
16 Polymers and Particle Orbits in Multiply Connected
   Spaces .................................................... 1084
   16.1 Simple Model for Entangled Polymers .................. 1084
   16.2 Entangled Fluctuating Particle Orbit: Aharonov-Bohm
        Effect ............................................... 1088
   16.3 Aharonov-Bohm Effect and Fractional Statistics ....... 1096
   16.4 Self-Entanglement of Polymer ......................... 1101
   16.5 The Gauss Invariant of Two Curves .................... 1115
   16.6 Bound States of Polymers and Ribbons ................. 1117
   16.7 Chern-Simons Theory of Entanglements ................. 1124
   16.8 Entangled Pair of Polymers ........................... 1127
        16.8.1 Polymer Field Theory for Probabilities ........ 1129
        16.8.2 Calculation of Partition Function ............. 1130
        16.8.3 Calculation of Numerator in Second Moment ..... 1132
        16.8.4 First Diagram in Fig. 16.23 ................... 1134
        16.8.5 Second and Third Diagrams in Fig. 16.23 ....... 1135
        16.8.6 Fourth Diagram in Fig. 16.23 .................. 1136
        16.8.7 Second Topological Moment ..................... 1137
   16.9 Chern-Simons Theory of Statistical Interaction ....... 1137
   16.10 Second-Quantized Anyon Fields ....................... 1140
   16.11 Fractional Quantum Hall Effect ...................... 1143
   16.12 Anyonic Superconductivity ........................... 1147
   16.13 Non-Abelian Chern-Simons Theory ..................... 1149
   Appendix 16A  Calculation of Feynman Diagrams in Polymer
         Entanglement ........................................ 1151
   Appendix 16B Kauffman and BLM/Ho polynomials .............. 1153
   Appendix 16C Skein Relation between Wilson Loop
         Integrals ........................................... 1153
   Appendix 16D London Equations ............................. 1156
   Appendix 16E Hall Effect in Electron Gas .................. 1158
   Notes and References ...................................... 1158
17 Tunneling ................................................. 1164
   17.1 Double-Well Potential ................................ 1164
   17.2 Classical Solutions — Kinks and Antikinks ............ 1167
   17.3 Quadratic Fluctuations ............................... 1171
        17.3.1 Zero-Eigenvalue Mode .......................... 1177
        17.3.2 Continuum Part of Fluctuation Factor .......... 1181
   17.4 General Formula for Eigenvalue Ratios ................ 1183
   17.5 Fluctuation Determinant from Classical Solution ...... 1185
   17.6 Wave Functions of Double-Well ........................ 1189
   17.7 Gas of Kinks and Antikinks and Level Splitting
        Formula .............................................. 1190
   17.8 Fluctuation Correction to Level Splitting ............ 1194
   17.9 Tunneling and Decay .................................. 1199
   17.10 Large-Order Behavior of Perturbation Expansions ..... 1207
        17.10.1 Growth Properties of Expansion Coefficients .. 1208
        17.10.2 Semiclassical Large-Order Behavior ........... 1211
        17.10.3 Fluctuation Correction to the Imaginary
                Part and Large-Order Behavior ................ 1216
        17.10.4 Variational Approach to Tunneling.
                Perturbation Coefficients to All Orders ...... 1219
        17.10.5 Convergence of Variational Perturbation
                Expansion .................................... 1227
   17.11 Decay of Supercurrent in Thin Closed Wire ........... 1235
   17.12 Decay of Metastable Thermodynamic Phases ............ 1247
   17.13 Decay of Metastable Vacuum State in Quantum Field
         Theory .............................................. 1254
   17.14 Crossover from Quantum Tunneling to Thermally
         Driven Decay ........................................ 1255
   Appendix 17A Feynman Integrals for Fluctuation
         Correction .......................................... 1257
   Notes and References ...................................... 1259
18 Nonequilibrium Quantum Statistics ......................... 1262
   18.1 Linear Response and Time-Dependent Green Functions
        for T ≠ 0 ............................................ 1262
   18.2 Spectral Representations of Green Functions for
        T ≠ 0 ................................................ 1265
   18.3 Other Important Green Functions ...................... 1268
   18.4 Hermitian Adjoint Operators .......................... 1271
   18.5 Harmonic Oscillator Green Functions for T ≠ 0 ........ 1272
        18.5.1 Creation Annihilation Operators ............... 1272
        18.5.2 Real Field Operators .......................... 1275
   18.6 Nonequilibrium Green Functions ....................... 1277
   18.7 Perturbation Theory for Nonequilibrium Green
        Functions ............................................ 1286
   18.8 Path Integral Coupled to Thermal Reservoir ........... 1289
   18.9 Fokker-Planck Equation ............................... 1295
        18.9.1 Canonical Path Integral for Probability
               Distribution .................................. 1296
        18.9.2 Solving the Operator Ordering Problem ......... 1298
        18.9.3 Strong Damping ................................ 1303
   18.10 Langevin Equations .................................. 1307
   18.11 Path Integral Solution of Klein-Kramers Equation .... 1311
   18.12 Stochastic Quantization ............................. 1312
   18.13 Stochastic Calculus ................................. 1316
        18.13.1 Kubo's stochastic Liouville equation ......... 1316
        18.13.2 From Kubo's to Fokker-Planck Equations ....... 1317
        18.13.3 Ito's Lemma .................................. 1320
   18.14 Solving the Langevin Equation ....................... 1323
   18.15 Heisenberg Picture for Probability Evolution ........ 1327
   18.16 Supersymmetry ....................................... 1330
   18.17 Stochastic Quantum Liouville Equation ............... 1332
   18.18 Master Equation for Time Evolution .................. 1334
   18.19 Relation to Quantum Langevin Equation ............... 1336
   18.20 Electromagnetic Dissipation and Decoherence ......... 1337
        18.20.1 Forward-Backward Path Integral ............... 1337
        18.20.2 Master Equation for Time Evolution in
                Photon Bath .................................. 1340
        18.20.3 Line Width ................................... 1341
        18.20.4 Lamb shift ................................... 1342
        18.20.5 Langevin Equations ........................... 1346
   18.21 Fokker-Planck Equation in Spaces with Curvature
         and Torsion ......................................... 1347
   18.22 Stochastic Interpretation of Quantum-Mechanical
         Amplitudes .......................................... 1348
   18.23 Stochastic Equation for Schrödinger Wave Function ... 1350
   18.24 Real Stochastic and Deterministic Equation for
         Schrödinger Wave Function ........................... 1351
        18.24.1 Stochastic Differential Equation ............. 1352
        18.24.2 Equation for Noise Average ................... 1352
        18.24.3 Harmonic Oscillator .......................... 1353
        18.24.4 General Potential ............................ 1353
        18.24.5 Deterministic Equation ....................... 1354
   Appendix 18A Inequalities for Diagonal Green Functions .... 1355
   Appendix 18B General Generating Functional ................ 1359
   Appendix 18C Wick Decomposition of Operator Products ...... 1363
   Notes and References ...................................... 1364
19 Relativistic Particle Orbits .............................. 1368
   19.1 Special Features of Relativistic Path Integrals ...... 1370
        19.1.1 Simplest Gauge Fixing ......................... 1373
        19.1.2 Partition Function of Ensemble of Closed
               Particle Loops ................................ 1375
        19.1.3 Fixed-Energy Amplitude ........................ 1376
   19.2 Tunneling in Relativistic Physics .................... 1377
        19.2.1 Decay Rate of Vacuum in Electric Field ........ 1377
        19.2.2 Birth of Universe ............................. 1386
        19.2.3 Friedmann Model ............................... 1392
        19.2.4 Tunneling of Expanding Universe ............... 1396
   19.3 Relativistic Coulomb System .......................... 1397
   19.4 Relativistic Particle in Electromagnetic Field ....... 1400
        19.4.1 Action and Partition Function ................. 1401
        19.4.2 Perturbation Expansion ........................ 1401
        19.4.3 Lowest-Order Vacuum Polarization .............. 1404
   19.5 Path Integral for Spin-1/2 Particle .................. 1408
        19.5.1 Dirac Theory .................................. 1408
        19.5.2 Path Integral ................................. 1412
        19.5.3 Amplitude with Electromagnetic Interaction .... 1414
        19.5.4 Effective Action in Electromagnetic Field ..... 1417
        19.5.5 Perturbation Expansion ........................ 1418
        19.5.6 Vacuum Polarization ........................... 1419
   19.6 Supersymmetry ........................................ 1421
        19.6.1 Global Invariance ............................. 1421
        19.6.2 Local Invariance .............................. 1422
   Appendix 19A Proof of Same Quantum Physics of Modified
        Action ............................................... 1424
   Notes and References ...................................... 1426
20 Path Integrals and Financial Markets ...................... 1428
   20.1 Fluctuation Properties of Financial Assets ........... 1428
        20.1.1 Harmonic Approximation to Fluctuations ........ 1430
        20.1.2 Levy Distributions ............................ 1432
        20.1.3 Truncated Levy Distributions .................. 1434
        20.1.4 Asymmetric Truncated Levy Distributions ....... 1439
        20.1.5 Gamma Distribution ............................ 1442
        20.1.6 Boltzmann Distribution ........................ 1443
        20.1.7 Student or Tsallis Distribution ............... 1446
        20.1.8 Tsallis Distribution in Momentum Space ........ 1448
        20.1.9 Relativistic Particle Boltzmann Distribution .. 1449
        20.1.10 Meixner Distributions ........................ 1450
        20.1.11 Generalized Hyperbolic Distributions ......... 1451
        20.1.12 Debye-Waller Factor for Non-Gaussian
                Fluctuations ................................. 1454
        20.1.13 Path Integral for Non-Gaussian
                Distribution ................................. 1454
        20.1.14 Time Evolution of Distribution ............... 1457
        20.1.15 Central Limit Theorem ........................ 1457
        20.1.16 Additivity Property of Noises and
                Hamiltonians ................................. 1459
        20.1.17 Lйvy-Khintchine Formula ...................... 1460
        20.1.18 Semigroup Property of Asset Distributions .... 1461
        20.1.19 Time Evolution of Moments of Distribution .... 1463
        20.1.20 Boltzmann Distribution ....................... 1464
        20.1.21 Fourier-Transformed Tsallis Distribution ..... 1467
        20.1.22 Superposition of Gaussian Distributions ...... 1468
        20.1.23 Fokker-Planck-Type Equation .................. 1470
        20.1.24 Kramers-Moyal Equation ....................... 1471
   20.2 Ito-like Formula for Non-Gaussian Distributions ...... 1473
        20.2.1 Continuous Time ............................... 1473
        20.2.2 Discrete Times ................................ 1476
   20.3 Martingales .......................................... 1477
        20.3.1 Gaussian Martingales .......................... 1477
        20.3.2 Non-Gaussian Martingale Distributions ......... 1479
   20.4 Origin of Semi-Heavy Tails ........................... 1481
        20.4.1 Pair of Stochastic Differential Equations ..... 1482
        20.4.2 Fokker-Planck Equation ........................ 1482
        20.4.3 Solution of Fokker-Planck Equation ............ 1485
        20.4.4 Pure x-Distribution ........................... 1487
        20.4.5 Long-Time Behavior ............................ 1488
        20.4.6 Tail Behavior for all Times ................... 1492
        20.4.7 Path Integral Calculation ..................... 1494
        20.4.8 Natural Martingale Distribution ............... 1495
   20.5 Time Series .......................................... 1496
   20.6 Spectral Decomposition of Power Behaviors ............ 1497
   20.7 Option Pricing ....................................... 1498
        20.7.1 Black-Scholes Option Pricing Model ............ 1499
        20.7.2 Evolution Equations of Portfolios with
               Options ....................................... 1501
        20.7.3 Option Pricing for Gaussian Fluctuations ...... 1505
        20.7.4 Option Pricing for Boltzmann Distribution ..... 1509
        20.7.5 Option Pricing for General Non-Gaussian
               Fluctuations .................................. 1509
        20.7.6 Option Pricing for Fluctuating Variance ....... 1512
        20.7.7 Perturbation Expansion and Smile .............. 1514
   Appendix 20A  Large-x; Behavior of Truncated Levy
        Distribution ......................................... 1517
   Appendix 20B  Gaussian Weight ............................. 1520
   Appendix 20C  Comparison with Dow-Jones Data .............. 1521
   Notes and References ...................................... 1522

Index ........................................................ 1529


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:20 2019. Размер: 57,692 bytes.
Посещение N 1566 c 10.09.2013