Slavyanov S. Asymptotic solutions of the one-dimensional Schrodinger equation (Providence, 1996). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSlavyanov S. Asymptotic solutions of the one-dimensional Schrödinger equation / [transl. by V. Khidekel]. - Providence: American Mathematical Society, 1996. - xvi, 190 p.: ill. - (Translations of mathematical monographs; vol.151). - Ref.: p. 185-190. - ISBN 0-8218-0536-3; ISSN 0065-9282
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface to the English Edition ................................. xi
Preface ...................................................... xiii

Chapter I  Comparison Functions ................................. 1
1.1   Basic concepts of asymptotic methods ...................... 1
      1  Symbols О, o, and ~ .................................... 1
      2  Asymptotic series and their properties. Asymptotic 
         ansatz ................................................. 3
      3  Properties of asymptotic expansions .................... 5
1.2   The Airy functions and their asymptotics .................. 7
      1  The Airy equation. Standard solutions. Relations 
         between solutions ...................................... 7
      2  Formal solutions of the Airy equation at infinity ..... 10
      3  Derivation of asymptotic expansion for the Airy 
         function from integral representation at |arg z| ≤
         2π/3 - ε .............................................. 11
      4  The Stokes phenomenon for the Airy equation ........... 14
      5  Justifying formal asymptotic solutions of the Airy
         equation by using integral equations .................. 17
1.3   Parabolic cylinder functions and their asymptotics ....... 21
      1  The Weber equation. Standard solutions and relations
         between solutions ..................................... 21
      2  Asymptotics of the parabolic cylinder functions for
         large arguments ....................................... 25
      3  Modified parabolic cylinder functions and their 
         asymptotics ........................................... 30
1.4   The Bessel functions and their asymptotics ............... 31
      1  The Bessel equation. Standard solutions and 
         relations between solutions ........................... 31
      2  Asymptotics of cylinder functions for large 
         arguments ............................................. 32
      3  Asymptotic solutions of the equation y"(z) + [1/z + 
         (1 - m2)/(4z2)]y(z) = 0 ............................... 35
      4  The equation w''(z) — azmw(z) = 0: Solutions and their
         asymptotics ........................................... 37
1.5   Confluent hypergeometric function and its asymptotics .... 40
      1  Confluent hypergeometric equation. The functions 
         Φ(а, с, z) and ψ(а, с, z) and relations between them .. 40
      2  Asymptotics of the functions Φ(а, с, z) and 
         ψ(а, с, z) ............................................ 43
      3  The Whittaker functions and their asymptotics ......... 45
      Comments ................................................. 47

Chapter II Derivation of Asymptotics ........................... 49
II.1  Reduction of second order equations to the canonical 
      form ..................................................... 49
      2  formal theory for equations without transition
         points ................................................ 50
      3  The Liouville-Green transformation .................... 56
II.2  Asymptotic solutions on the complex plane ................ 59
      1  Turning points, Stokes lines, canonical domains ....... 59
      2  Primary fundamental system of solutions in a 
         canonical domain ...................................... 62
      3  Relation matrices ..................................... 65
II.3  Method of comparison equations for equations with one 
      transition point ......................................... 69
      1  Formal procedure of the method of comparison
         equations ............................................. 69
      2  Method of comparison equations for equations with 
         one simple turning point .............................. 71
      3  Asymptotics far from a turning point .................. 73
      4  Local asymptotic expansions near a turning point ...... 76
      5  Turning point of multiplicity m ....................... 77
      6  Equations with one simple pole ........................ 80
II.4  Method of comparison equations for equations with two
      transition points ........................................ 81
      1  Formal analysis of equations with two simple turning 
         points ................................................ 81
      2  Regularization of phase integrals ..................... 85
      3  Formal analysis of equations with one simple turning
         point and one simple pole ............................. 90
II.5  Method of comparison equations for equations with close 
      transition points ........................................ 92
      1  Scaling transformations ............................... 92
      2  Two close turning points .............................. 94
      3  Close pole and turning point .......................... 97
      Comments ................................................. 99

Chapter III  Physical Problems ................................ 101
III.1 The WKB method for bound states in quantum mechanics .... 101
      1  Anharmonic oscillator. Highly excited states ......... 101
      2  Anharmonic oscillator. Small perturbations ........... 107
      3  Quantization for potentials Coulomb-type 
         singularity .......................................... 111
III.2 Normal modes in ocean waveguide ......................... 118
      1  Formulation of the problem ........................... 118
      2  Asymptotic formulas for normal modes and phase 
         velocities ........................................... 120
III.3 Exponential spectrum splitting .......................... 123
      1  Two symmetric potential wells ........................ 123
      2  Symmetric two-center problem ......................... 127
III.4 Quasistationary states .................................. 131
      1  Stark effect in hydrogen ............................. 131
III.5 One-dimensional scattering problem ...................... 136
      1  Semiclassical asymptotics of the Jost functions and 
         scattering phases for potentials with Coulomb 
         singularity .......................................... 136
      2  Wave transition through a potential barrier .......... 139
      3  Overbarrier reflection ............................... 143
III.6 Band spectrum ........................................... 147
      1  Equations with periodic potential .................... 147
      2  Asymptotic formulas for bandwidths ................... 149
      3  The Mathieu equation ................................. 152
      Comments ................................................ 152

Chapter IV. Supplements ....................................... 155
IV.1  Numerical realization of asymptotic methods ............. 155
      1  Approximation of potential and evaluation of phase 
         integrals ............................................ 155
      2  Approximation of the derivatives of a potential at
         a point .............................................. 158
IV.2  The Prtifer transformation and iterative modification
      of the WKB method ....................................... 160
      1  The Prüfer transformation ............................ 160
      2  Iterative procedure for solving equations for 
         amplitude and phase and its connection with 
         asymptotic expansions ................................ 162
IV.3  Solutions of z2w'' - (z3 + a2z2 + a1z + a0)w = 0 ........ 164
      1  Standard solutions ................................... 164
      2  Representation of solutions in terms of the Mellin-
         Barnes integrals ..................................... 167
      3  Connection between the solutions Iα(j)(z) and 
         Kα(k,r)(z) ........................................... 174
      4  Difference equation for connection factors ........... 180

Comments ...................................................... 183
References .................................................... 185


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:16 2019. Размер: 12,056 bytes.
Посещение N 1676 c 03.09.2013