Tadmor E.B. Modeling materials: continuum, atomistic, and multiscale techniques (Cambridge; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаTadmor E.B. Modeling materials: continuum, atomistic, and multiscale techniques / E.B.Tadmor, R.E.Miller. - Cambridge; New York: Cambridge Univ. Press, 2011. - xxviii, 759 p.: ill. - Ref.: p.177-190. - Ind.: p.191-195. - ISBN 978-0-521-85698-0
 

Оглавление / Contents
 
Preface ...................................................... xiii
Acknowledgments ............................................... xvi
Notation ...................................................... xxi

1  Introduction ................................................. 1
   1.1  Multiple scales in crystalline materials ................ 1
        1.1.1  Orowan's pocket watch ............................ 1
        1.1.2  Mechanisms of plasticity ......................... 3
        1.1.3  Perfect crystals ................................. 4
        1.1.4  Planar defects: surfaces ......................... 7
        1.1.5  Planar defects: grain boundaries ................ 10
        1.1.6  Line defects: dislocations ...................... 12
        1.1.7  Point defects ................................... 15
        1.1.8  Large-scale defects: cracks, voids and
               inclusions ...................................... 16
   1.2  Materials scales: taking stock ......................... 17
        Further reading ........................................ 18

Part I Continuum mechanics and thermodynamics .................. 19

2  Essential continuum mechanics and thermodynamics ............ 21
   2.1  Scalars, vectors, and tensors .......................... 22
        2.1.1  Tensor notation ................................. 22
        2.1.2  Vectors and higher-order tensors ................ 26
        2.1.3  Tensor operations ............................... 33
        2.1.4  Properties of second-order tensors .............. 37
        2.1.5  Tensor fields ................................... 39
   2.2  Kinematics of deformation .............................. 42
        2.2.1  The continuum particle .......................... 42
        2.2.2  The deformation mapping ......................... 43
        2.2.3  Material and spatial descriptions ............... 44
        2.2.4  Description of local deformation ................ 46
        2.2.5  Kinematic rates ................................. 49
   2.3  Mechanical conservation and balance laws ............... 51
        2.3.1  Conservation of mass ............................ 51
        2.3.2  Balance of linear momentum ...................... 53
        2.3.3  Balance of angular momentum ..................... 58
        2.3.4  Material form of the momentum balance
               equations ....................................... 59
   2.4  Thermodynamics ......................................... 61
        2.4.1  Macroscopic observables, thermodynamic
               equilibrium and state variables ................. 61
        2.4.2  Thermal equilibrium and the zeroth law of
               thermodynamics .................................. 65
        2.4.3  Energy and the first law of thermodynamics ...... 67
        2.4.4  Thermodynamic processes ......................... 71
        2.4.5  The second law of thermodynamics and the
               direction of time ............................... 72
        2.4.6  Continuum thermodynamics ........................ 83
   2.5  Constitutive relations ................................. 90
        2.5.1  Constraints on constitutive relations ........... 91
        2.5.2  Local action and the second law of
               thermodynamics .................................. 92
        2.5.3  Material frame-indifference ..................... 97
        2.5.4  Material symmetry ............................... 99
        2.5.5  Linearized constitutive relations for
               anisotropic hyperelastic solids ................ 101
   2.6  Boundary-value problems and the principle of minimum
        potential energy ...................................... 105
        Further reading ....................................... 108
        Exercises ............................................. 109

Part II Atomistic ............................................. 113

3  Lattices and crystal structures ............................ 115
   3.1  Crystal history: continuum or corpuscular? ............ 115
   3.2  The structure of ideal crystals ....................... 119
   3.3  Lattices .............................................. 119
        3.3.1  Primitive lattice vectors and primitive unit
               cells .......................................... 120
        3.3.2  Voronoi tessellation and the Wigner-Seitz
               cell ........................................... 122
        3.3.3  Conventional unit cells ........................ 123
        3.3.4  Crystal directions ............................. 124
   3.4  Crystal systems ....................................... 125
        3.4.1  Point symmetry operations ...................... 125
        3.4.2  The seven crystal systems ...................... 129
   3.5  Bravais lattices ...................................... 134
        3.5.1  Centering in the cubic system .................. 134
        3.5.2  Centering in the triclinic system .............. 137
        3.5.3  Centering in the monoclinic system ............. 137
        3.5.4  Centering in the orthorhombic and tetragonal
               systems ........................................ 138
        3.5.5  Centering in the hexagonal and trigonal
               systems ........................................ 138
        3.5.6  Summary of the fourteen Bravais lattices ....... 139
   3.6  Crystal structure ..................................... 139
        3.6.1  Essential and nonessential descriptions of
               crystals ....................................... 142
        3.6.2  Crystal structures of some common crystals ..... 142
   3.7  Some additional lattice concepts ...................... 146
        3.7.1  Fourier series and the reciprocal lattice ...... 146
        3.7.2  The first Brillouin zone ....................... 148
        3.7.3  Miller indices ................................. 149
        Further reading ....................................... 151
        Exercises ............................................. 151
4  Quantum mechanics of materials ............................. 153
   4.1  Introduction .......................................... 153
   4.2  A brief and selective history of quantum mechanics .... 154
        4.2.1 The Hamiltonian formulation ..................... 157
   4.3  The quantum theory of bonding ......................... 160
        4.3.1  Dirac notation ................................. 160
        4.3.2  Electron wave functions ........................ 163
        4.3.3  Schrцdinger's equation ......................... 168
        4.3.4  The time-independent Schrцdinger equation ...... 171
        4.3.5  The hydrogen atom .............................. 172
        4.3.6  The hydrogen molecule .......................... 179
        4.3.7  Summary of the quantum mechanics of bonding .... 187
   4.4  Density functional theory (DFT) ....................... 188
        4.4.1  Exact formulation .............................. 188
        4.4.2  Approximations necessary for computational
               progress ....................................... 196
        4.4.3  The choice of basis functions .................. 199
        4.4.4  Electrons in periodic systems .................. 200
        4.4.5  The essential machinery of a plane-wave DFT
               code ........................................... 210
        4.4.6  Energy minimization and dynamics: forces in
               DFT ............................................ 221
   4.5  Semi-empirical quantum mechanics: tight-binding (ТВ)
        methods ............................................... 223
        4.5.1  LCAO ........................................... 223
        4.5.2  The Hamiltonian and overlap matrices ........... 224
        4.5.3  Slater-Koster parameters for two-center
               integrals ...................................... 227
        4.5.4  Summary of the ТВ formulation .................. 228
        4.5.5  ТВ molecular dynamics .......................... 228
        4.5.6  From ТВ to empirical atomistic models .......... 229
        Further reading ....................................... 235
        Exercises ............................................. 235
5  Empirical atomistic models of materials .................... 237
   5.1  Consequences of the Born-Oppenheimer approximation
        (BOA) ................................................. 238
   5.2  Treating atoms as classical particles ................. 240
   5.3  Sensible functional forms ............................. 241
        5.3.1  Interatomic distances .......................... 242
        5.3.2  Requirement of translational, rotational and
               parity invariance .............................. 243
        5.3.3  The cutoff radius .............................. 245
   5.4  Cluster potentials .................................... 246
        5.4.1  Formally exact cluster potentials .............. 247
        5.4.2  Pair potentials ................................ 251
        5.4.3  Modeling ionic crystals: the Born-Mayer
               potential ...................................... 256
        5.4.4  Three-and four-body potentials ................. 257
        5.4.5  Modeling organic molecules: CHARMM and AMBER ... 259
        5.4.6  Limitations of cluster potentials and the
               need for interatomic functionals ............... 261
   5.5  Pair functionals ...................................... 262
        5.5.1  The generic pair functional form: the
               glue-EAM-EMT-FS model .......................... 263
        5.5.2  Physical interpretations of the pair
               functional ..................................... 264
        5.5.3  Fitting the pair functional model .............. 265
        5.5.4  Comparing pair functionals to cluster
               potentials ..................................... 266
   5.6  Cluster functionals ................................... 268
        5.6.1  Introduction to the bond order: the Tersoff
               potential ...................................... 268
        5.6.2  Bond energy and bond order in ТВ ............... 271
        5.6.3  ReaxFF ......................................... 274
        5.6.4  The modified embedded atom method .............. 276
   5.7  Atomistic models: what can they do? ................... 279
        5.7.1  Speed and scaling: how many atoms over how
               much time? ..................................... 279
        5.7.2  Transferability: predicting behavior outside
               the fit ........................................ 282
        5.7.3  Classes of materials and our ability to model
               them ........................................... 285
   5.8  Interatomic forces in empirical atomistic models ...... 288
        5.8.1  Weak and strong laws of action and reaction .... 288
        5.8.2  Forces in conservative systems ................. 291
        5.8.3  Atomic forces for some specific interatomic
               models ......................................... 294
        5.8.4  Bond stiffnesses for some specific
               interatomic models ............................. 297
        5.8.5  The cutoff radius and interatomic forces ....... 298
   Further reading ............................................ 299
   Exercises .................................................. 300
6  Molecular statics .......................................... 304
   6.1  The potential energy landscape ........................ 304
   6.2  Energy minimization ................................... 306
        6.2.1  Solving nonlinear problems: initial guesses .... 306
        6.2.2  The generic nonlinear minimization algorithm ... 307
        6.2.3  The steepest descent (SD) method ............... 308
        6.2.4  Line minimization .............................. 310
        6.2.5  The conjugate gradient (CG) method ............. 311
        6.2.6  The condition number ........................... 312
        6.2.7  The Newton-Raphson (NR) method ................. 313
   6.3  Methods for finding saddle points and transition
        paths ................................................. 315
        6.3.1 The nudged elastic band (NEB) method ............ 316
   6.4  Implementing molecular statics ........................ 321
        6.4.1  Neighbor lists ................................. 321
        6.4.2  Periodic boundary conditions (PBCs) ............ 325
        6.4.3  Applying stress and pressure boundary
               conditions ..................................... 328
        6.4.4  Boundary conditions on atoms ................... 330
   6.5  Application to crystals and crystalline defects ....... 331
        6.5.1  Cohesive energy of an infinite crystal ......... 332
        6.5.2  The universal binding energy relation (UBER) ... 334
        6.5.3  Crystal defects: vacancies ..................... 338
        6.5.4  Crystal defects: surfaces and interfaces ....... 339
        6.5.5  Crystal defects: dislocations .................. 347
        6.5.6  The γ-surface .................................. 357
        6.5.7  The Peierls-Nabarro model of a dislocation ..... 360
   6.6  Dealing with temperature and dynamics ................. 371
   Further reading ............................................ 371
   Exercises .................................................. 372

Part III Atomistic foundations of continuum concepts .......... 375

7  Classical equilibrium statistical mechanics ................ 377
   7.1  Phase space: dynamics of a system of atoms ............ 378
        7.1.1  Hamilton's equations ........................... 378
        7.1.2  Macroscopic translation and rotation ........... 379
        7.1.3  Center of mass coordinates ..................... 380
        7.1.4  Phase space coordinates ........................ 381
        7.1.5  Trajectories through phase space ............... 382
        7.1.6  Liouville's theorem ............................ 384
   7.2  Predicting macroscopic observables .................... 387
        7.2.1  Time averages .................................. 387
        7.2.2  The ensemble viewpoint and distribution
               functions ...................................... 389
        7.2.3  Why does the ensemble approach work? ........... 392
   7.3  The microcanonical (NVE) ensemble ..................... 403
        7.3.1  The hypersurface and volume of an isolated
               Hamiltonian system ............................. 403
        7.3.2  The microcanonical distribution function ....... 406
        7.3.3  Systems in weak interaction .................... 409
        7.3.4  Internal energy, temperature and entropy ....... 412
        7.3.5  Derivation of the ideal gas law ................ 418
        7.3.6  Equipartition and virial theorems:
               microcanonical derivation ...................... 420
   7.4  The canonical (NVT) ensemble .......................... 423
        7.4.1  The canonical distribution function ............ 424
        7.4.2  Internal energy and fluctuations ............... 428
        7.4.3  Helmholtz free energy .......................... 429
        7.4.4  Equipartition theorem: canonical derivation .... 431
        7.4.5  Helmholtz free energy in the thermodynamic
               limit .......................................... 432
   Further reading ............................................ 437
   Exercises .................................................. 438
8  Microscopic expressions for continuum fields ............... 440
   8.1  Stress and elasticity in a system in thermodynamic
        equilibrium ........................................... 442
        8.1.1  Canonical transformations ...................... 442
        8.1.2  Microscopic stress tensor in a finite system
               at zero temperature ............................ 447
        8.1.3  Microscopic stress tensor at finite
               temperature: the virial stress ................. 450
        8.1.4  Microscopic elasticity tensor .................. 460
   8.2  Continuum fields as expectation values:
        nonequilibrium systems ................................ 465
        8.2.1  Rate of change of expectation values ........... 466
        8.2.2  Definition of pointwise continuum fields ....... 467
        8.2.3  Continuity equation ............................ 469
        8.2.4  Momentum balance and the pointwise stress
               tensor ......................................... 469
        8.2.5  Spatial averaging and macroscopic fields ....... 475
   8.3  Practical methods: the stress tenser .................. 479
        8.3.1  The Hardy stress ............................... 480
        8.3.2  The virial stress tensor and atomic-level
               stresses ....................................... 481
        8.3.3  The Tsai traction: a planar definition for
               stress ......................................... 482
        8.3.4  Uniqueness of the stress tensor ................ 487
        8.3.5  Hardy, virial and Tsai stress expressions:
               numerical considerations ....................... 488
   Exercises .................................................. 489
9  Molecular dynamics ......................................... 492
   9.1  Brief historical introduction ......................... 492
   9.2  The essential MD algorithm ............................ 495
   9.3  The NVE ensemble: constant energy and constant
        strain ................................................ 497
        9.3.1  Integrating the NVE ensemble: the velocity-
               Verlet (VV) algorithm .......................... 497
        9.3.2  Quenched dynamics .............................. 504
        9.3.3  Temperature initialization ..................... 504
        9.3.4  Equilibration time ............................. 507
   9.4  The NVT ensemble: constant temperature and constant
        strain ................................................ 507
        9.4.1  Velocity rescaling ............................. 508
        9.4.2  Gauss'principle of least constraint and the
               isokinetic thermostat .......................... 509
        9.4.3  The Langevin thermostat ........................ 511
        9.4.4  The Nosé-Hoover (NH) thermostat ................ 513
        9.4.5  Liouville's equation for non-Hamiltonian
               systems ........................................ 516
        9.4.6  An alternative derivation of the NH
               thermostat ..................................... 517
        9.4.7  Integrating the NVT ensemble ................... 518
   9.5  The finite strain NσE ensemble: applying stress ....... 520
        9.5.1  A canonical transformation of variables ........ 521
        9.5.2  The hydrostatic stress state ................... 527
        9.5.3  The Parrinello-Rahman (PR) approximation ....... 528
        9.5.4  The zero-temperature limit: applying stress
               in molecular statics ........................... 530
        9.5.5  The kinetic energy of the cell ................. 533
   9.6  The NσT ensemble: applying stress at a constant
        temperature ........................................... 533
   Further reading ............................................ 534
   Exercises .................................................. 534

Part IV Multiscale methods .................................... 537

10 What is multiscale modeling? ............................... 539
   10.1 Multiscale modeling: what is in a name? ............... 539
   10.2 Sequential multiscale models .......................... 541
   10.3 Concurrent multiscale models .......................... 543
        10.3.1 Hierarchical methods ........................... 544
        10.3.2 Partitioned-domain methods ..................... 546
   10.4 Spanning time scales .................................. 547
        Further reading ....................................... 549
11 Atomistic constitutive relations for multilattice
   crystals ................................................... 550
   11.1 Statistical mechanics of systems in metastable
        equilibrium ........................................... 554
        11.1.1 Restricted ensembles ........................... 554
        11.1.2 Properties of a metastable state from
               a restricted canonical ensemble ................ 556
   11.2 Relating mean positions to applied deformation: the
        Cauchy-Born rule ...................................... 558
        11.2.1 Multilattice crystals and mean positions ....... 558
        11.2.2 Cauchy-Born kinematics ......................... 559
        11.2.3 Centrosymmetric crystals and the Cauchy-Born
               rule ........................................... 561
        11.2.4 Extensions and failures of the Cauchy-Born
               rule ........................................... 562
   11.3 Finite temperature constitutive relations for
        multilattice crystals ................................. 563
        11.3.1 Periodic supercell of a multilattice crystal ... 563
        11.3.2 Helmholtz free energy density of
               a multilattice crystal ......................... 566
        11.3.3 Determination of the reference configuration ... 567
        11.3.4 Uniform deformation and the macroscopic
               stress tensor .................................. 570
        11.3.5 Elasticity tensor .............................. 575
   11.4 Quasiharmonic approximation ........................... 578
        11.4.1 Quasiharmonic Helmholtz free energy ............ 578
        11.4.2 Determination of the quasiharmonic reference
               configuration .................................. 582
        11.4.3 Quasiharmonic stress and elasticity tensors .... 586
        11.4.4 Strict harmonic approximation .................. 590
   11.5 Zero-temperature constitutive relations ............... 592
        11.5.1 General expressions for the stress and
               elasticity tensors ............................. 592
        11.5.2 Stress and elasticity tensors for some
               specific interatomic models .................... 593
        11.5.3 Crystal symmetries and the Cauchy relations .... 595
   Further reading ............................................ 598
   Exercises .................................................. 598
12 Atomistic-continuum coupling: static methods ............... 601
   12.1 Finite elements and the Cauchy-Born rule .............. 601
   12.2 The essential components of a coupled model ........... 604
   12.3 Energy-based formulations ............................. 608
        12.3.1 Total energy functional ........................ 608
        12.3.2 The quasi-continuum (QC) method ................ 610
        12.3.3 The coupling of length scales (CLS) method ..... 613
        12.3.4 The bridging domain (BD) method ................ 614
        12.3.5 The bridging scale method (BSM) ................ 616
        12.3.6 CACM: iterative minimization of two energy
               functionals .................................... 617
        12.3.7 Cluster-based quasicontinuum (CQC-E) ........... 618
   12.4 Ghost forces in energy-based methods .................. 620
        12.4.1 A one-dimensional Lennard-Jones chain of
               atoms .......................................... 622
        12.4.2 A continuum constitutive law for the Lennard-
               Jones chain .................................... 623
        12.4.3 Ghost forces in a generic energy-based model
               of the chain ................................... 623
        12.4.4 Ghost forces in the cluster-based
               quasicontinuum (CQC-E) ......................... 627
        12.4.5 Ghost force correction methods ................. 630
   12.5 Force-based formulations .............................. 631
        12.5.1 Forces without an energy functional ............ 631
        12.5.2 FEAt and CADD .................................. 633
        12.5.3 The hybrid simulation method (HSM) ............. 634
        12.5.4 The atomistic-to-continuum (AtC) method ........ 634
        12.5.5 Cluster-based quasicontinuum (CQC-F) ........... 636
        12.5.6 Spurious forces in force-based methods ......... 636
   12.6 Implementation and use of the static QC method ........ 638
        12.6.1 A simple example: shearing a twin boundary ..... 638
        12.6.2 Setting up the model ........................... 640
        12.6.3 Solution procedure ............................. 642
        12.6.4 Twin boundary migration ........................ 644
        12.6.5 Automatic model adaption ....................... 645
   12.7 Quantitative comparison between the methods ........... 647
        12.7.1 The test problem ............................... 648
        12.7.2 Comparing the accuracy of multiscale methods ... 650
        12.7.3 Quantifying the speed of multiscale methods .... 654
        12.7.4 Summary of the relative accuracy and speed of
               multiscale methods ............................. 655
   Exercises .................................................. 656
13 Atomistic-continuum coupling: finite temperature and
   dynamics ................................................... 658
   13.1 Dynamic finite elements ............................... 659
   13.2 Equilibrium finite temperature multiscale methods ..... 661
        13.2.1 Effective Hamiltonian for the atomistic
               region ......................................... 662
        13.2.2 Finite temperature QC framework ................ 667
        13.2.3 Hot-QC-static: atomistic dynamics embedded in
               a static continuum ............................. 670
        13.2.4 Hot-QC-dynamic: atomistic and continuum
               dynamics ....................................... 672
        13.2.5 Demonstrative examples: thermal expansion and
               nanoindentation ................................ 675
   13.3 Nonequilibrium multiscale methods ..................... 677
        13.3.1 A naive starting point ......................... 678
        13.3.2 Wave reflections ............................... 678
        13.3.3 Generalized Langevin equations ................. 683
        13.3.4 Damping bands .................................. 687
   13.4 Concluding remarks .................................... 689
   Exercises .................................................. 689

Appendix A Mathematical representation of interatomic
   potentials ................................................. 690
   A.l Interatomic distances and invariance ................... 691
   A.2 Distance geometry: constraints between interatomic
       distances .............................................. 693
   A.3 Continuously differentiable extensions of fig.2int(s) ...... 696
   A.4 Alternative potential energy extensions and the
       effect on atomic forces ................................ 698

References .................................................... 702
Index ......................................................... 746


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:12 2019. Размер: 31,489 bytes.
Посещение N 1415 c 20.08.2013