Rate constant calculation for thermal reactions: methods and applications (Hoboken, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRate constant calculation for thermal reactions: methods and applications / ed. by H.DaCosta, M.Fan. - Hoboken: Wiley, 2012. - xvi, 341 p. - Incl. bibl. ref. - Ind.: p.337-341. - ISBN 978-0-470-58230-5
 

Оглавление / Contents
 
PREFACE ...................................................... xiii
   Herbert DaCosta and Maohong Fan

CONTRIBUTORS ................................................... xv

PART I  METHODS ................................................. j
1  Overview of Thermochemistry and Its Application to
   Reaction Kinetics ............................................ 3
   Elke Goos and Alexander Burcat
   1.1  History of Thermochemistry .............................. 3
   1.2  Thermochemical Properties ............................... 5
   1.3  Consequences of Thermodynamic Laws to Chemical 
        Kinetics ................................................ 8
   1.4  How to Get Thermochemical Values? ....................... 9
        1.4.1  Measurement of Thermochemical Values ............ 10
        1.4.2  Calculation of Thermochemical Values ............ 10
               1.4.2.1  Quantum Chemical Calculations of
                        Molecular Properties ................... 19
               1.4.2.2  Calculation of Thermodynamic
                        Functions from Molecular Properties .... 22
   1.5  Accuracy of Thermochemical Values ...................... 16
        1.5.1  Standard Enthalpies of Formation ................ 16
        1.5.2  Active Thermochemical Tables .................... 18
   1.6  Representation of Thermochemical Data for Use in
        Engineering Applications ............................... 21
        1.6.1  Representation in Tables ........................ 21
        1.6.2  Representation with Group Additivity Values ..... 21
        1.6.3  Representation as Polynomials ................... 22
               1.6.3.1  How to Change Δƒ H298K Without
                        Recalculating NASA Polynomials ......... 25
   1.7  Thermochemical Databases ............................... 26
   1.8  Conclusion ............................................. 27
   References .................................................. 27
2  Calculation of Kinetic Data Using Computational Methods ..... 33
   Fernando P. Cossío
   2.1  Introduction ........................................... 33
   2.2  Stationary Points and Potential Energy Hypersurfaces ... 34
   2.3  Calculation of Reaction and Activation Energies:
        Levels of Theory and Solvent Effects ................... 38
        2.3.1  Hartree-Fock and Post-Hartree-Fock Methods ...... 38
        2.3.2  Methods Based on Density Functional Theory ...... 41
        2.3.3  Computational Treatment of Solvent Effects ...... 44
   2.4  Estimate of Relative Free Energies: Standard States .... 47
   2.5  Theoretical Approximate Kinetic Constants and
        Treatment of Data ...................................... 50
   2.6  Selected Examples ...................................... 51
        2.6.1  Relative Reactivities of Phosphines in Aza-
               Wittig Reactions ................................ 52
        2.6.2  Origins of the Stereocontrol in the Staudinger
               Reaction Between Ketenes and Imines to Form
               β-Lactams ....................................... 54
        2.6.3  Origins of the Stereocontrol in the Reaction
               Between Imines and Homophthalic Anhydride ....... 58
   2.7  Conclusions and Outlook ................................ 61
   References .................................................. 62
3  Quantum Instanton Evaluation of the Kinetic Isotope
   Effects and of the Temperature Dependence of the Rate
   Constant .................................................... 67
   Jiří Vaníćek
   3.1  Introduction ........................................... 67
   3.2  Arrhenius Equation, Transition State Theory, and the
        Wigner Tunneling Correction ............................ 68
   3.3  Quantum Instanton Approximation for the Rate Constant .. 69
   3.4  Kinetic Isotope Effects ................................ 71
        3.4.1  Transition State Theory Framework for KIE ....... 71
        3.4.2  Quantum Instanten Approach and the
               Thermodynamic Integration with Respect to the
               Isotope Mass .................................... 72
   3.5  Temperature Dependence of the Rate Constant ............ 73
        3.5.1  Transition State Theory Framework for the
               Temperature Dependence of k(T) .................. 73
        3.5.2  Quantum Instanten Approach and the
               Thermodynamic Integration with Respect to the
               Inverse Temperature ............................. 74
   3.6  Path Integral Representation of Relevant Quantities .... 75
        3.6.1  Path Integral Formalism ......................... 75
        3.6.2  Estimators ...................................... 76
        3.6.3  Estimators for Er ............................... 11
        3.6.4  Estimators for Efig.3 ............................... 78
        3.6.5  Estimators for the Derivatives of Fr and Ffig.3
               with Respect to Mass ............................ 79
        3.6.6  Statistical Errors and Efficiency ............... 79
        3.6.7  Treatment of Potential Energy Surfaces for
               Many-Dimensional Systems ........................ 80
   3.7  Examples ............................................... 81
        3.7.1  Eckart Barrier .................................. 81
        3.7.2  Full-Dimensional H + H2 → H2 + H Reaction ....... 84
        3.7.3  [1,5]-Sigmatropic Hydrogen Shift in cis-l,3-
               Pentadiene ...................................... 86
   3.8  Summary ................................................ 88
   Appendix: Reactions ......................................... 89
   Acknowledgments ............................................. 89
   References .................................................. 89
4  Activation Energies in Computational Chemistry - A Case
   Study ....................................................... 93
   Michael Busch, Elisabet Ahlberg and Itai Panas
   4.1  Introduction ........................................... 93
   4.2  Context and Theoretical Background ..................... 95
        4.2.1  Density Functional Theory ....................... 95
        4.2.2  Calculating Transition States ................... 98
        4.2.3  The Tyrosine/Tyrosyl-Radical Reference
               Potential ....................................... 98
   4.3  Computational Details .................................. 99
   4.4  Recent Advances and New Results ........................ 99
        4.4.1  Homogenous OER Catalysts ........................ 99
        4.4.2  Embedded Transition Metal Dimers ............... 102
   4.5  Concluding Remarks .................................... 107
   Acknowledgments ............................................ 108
   References ................................................. 109
5  No Barrier Theory - A New Approach to Calculating Rate
   Constants in Solution ...................................... 113
   J. Peter Guthrie
   5.1  Introduction .......................................... 113
   5.2  The Idea Behind No Barrier Theory ..................... 114
   5.3  How to Define the Surface and Find the Transition
        State ................................................. 118
   5.4  What is Needed for a Calculation? ..................... 124
   5.5  Applications to Date .................................. 125
        5.5.1  Proton Transfer Reactions ...................... 125
        5.5.2  Addition of Water to Carbonyls ................. 126
        5.5.3  Cyanohydrin Formation .......................... 130
        5.5.4  The Reaction of Carbocations With Either
               Water or Azide Ion ............................. 131
        5.5.5  Decarboxylation ................................ 134
        5.5.6  The E2 Elimination Reaction .................... 136
        5.5.7  The Strecker Reaction .......................... 138
        5.5.8  The Aldol Addition ............................. 138
   5.6  Future Prospects for NBT .............................. 140
   5.7  Summary ............................................... 141
   References ................................................. 142

PART II  MINIREVIEWS AND APPLICATIONS ......................... 147

6  Quantum Chemical and Rate Constant Calculations of
   Thermal Isomerizations, Decompositions, and Ring
   Expansions of Organic Ring Compounds, Its Significance to
   Cohbusion Kinetics ......................................... 149
   Faina Dubnikova and Assa Lifshitz
   6.1  Prologue .............................................. 149
        6.1.1  Introduction ................................... 149
        6.1.2  Quantum Chemical Calculations .................. 150
        6.1.3  Rate Constant Calculations ..................... 151
        6.1.4  Experimental Methods ........................... 152
   6.2  Small Organic Ring Compounds .......................... 152
        6.2.1  Cyclopropane ................................... 152
        6.2.2  Cyclopropane Carbonitrile ...................... 153
        6.2.3  The Epoxy Family of Molecules .................. 154
   6.3  Pyrrole and Indole .................................... 156
        6.3.1  Pyrrole ........................................ 156
        6.3.2  Indole ......................................... 157
   6.4  Dihydrofurans and Dihydrobenzofurans .................. 160
        6.4.1  2,3-Dihydrofuran ............................... 160
        6.4.2  5-Methyl-2,3-Dihydrofuran ...................... 160
        6.4.3  Van der Waals Interactions in H2 Elimination:
               2,5-Dihydrofuran ............................... 161
        6.4.4  Dihydrobenzofuran and iso-Dihydrobenzofuran .... 163
   6.5  Naphthyl Acetylene-Naphthyl Ethylene .................. 166
   6.6  Ring Expansion Processes .............................. 168
        6.6.1  Methylcyclopentadiene .......................... 169
        6.6.2  Methyl Pyrrole ................................. 170
        6.6.3  Methylindene and Methylindole .................. 171
   6.7  Benzoxazole-Benzisoxazoles ............................ 173
   6.7  L Benzoxazole ......................................... 174
        6.7.2  1,2-Benzisoxazole .............................. 174
        6.7.3  2,1-Benzisoxazole - Intersystem Crossing ....... 176
   6.8  Conclusion ............................................ 181
   Acknowledgment ............................................. 185
   References ................................................. 185
7  Challenges in the Computation of Rate Constants for
   Lignin Model Compounds ..................................... 191
   Ariana Beste and A.C. Buchanan, III
   7.1  Lignin: A Renewable Source of Fuels and Chemicals ..... 191
        7.1.1  Origin and Chemical Structure .................. 193
        7.1.2  Processing Techniques and Challenges ........... 195
   7.2  Mechanistic Study of Lignin Model Compounds ........... 196
        7.2.1  Experimental Work .............................. 197
        7.2.2  Computational Work ............................. 201
   7.3  Computational Investigation of the Pyrolysis of
        β-O-4 Model Compounds ................................. 201
        7.3.1  Methodology .................................... 202
               7.3.1.1  Overview .............................. 202
               7.3.1.2  Transition State Theory ............... 203
               7.3.1.3  Anharmonic Corrections ................ 207
        7.3.2  Analytical Kinetic Models ...................... 210
               7.3.2.1  Parallel Reactions .................... 210
               7.3.2.2  Series of First-Order Reactions ....... 211
               7.3.2.3  Product Selectivity for the
                        Pyrolysis of PPE ...................... 211
        7.3.3  Numerical Integration .......................... 213
   7.4  Case Studies: Substituent Effects on Reactions of
        Phenethyl Phenyl Ethers ............................... 214
        7.4.1  Computational Details .......................... 215
        7.4.2  Initiation: Homolytic Cleavage ................. 215
        7.4.3  Hydrogen Abstraction Reactions and
               α/β-Selectivities .............................. 217
               7.4.3.1  PPE and PPE Derivatives with
                        Substituents on Phenethyl Group ....... 217
               7.4.3.2  PPE and PPE Derivatives with
                        Substituents on Phenyl Group
                        Adjacent to Ether Oxygen .............. 221
        7.4.4  Phenyl Rearrangement ........................... 229
   7.5  Conclusions and Outlook ............................... 232
   Acknowledgments ............................................ 234
   Appendix Summary of Kinetic Parameters ..................... 234
   References ................................................. 235
8  Quantum Chemistry Study on the Pyrolysis Mechanisms of
   Coal-Related Model Compounds ............................... 239
   Baojun Wang, Riguang Zhang and Lixia Ling
   8.1. Introduction to the Application of Quantum Chemistry
   Calculation to Investigation on Models of Coal Structure ... 239
   8.2  The Model for Coal Structure and Calculation Methods .. 240
        8.2.1  The Proposal of Local Microstructure Model
               of Coal ........................................ 240
        8.2.2  Coal-Related Model Compounds Describing the
               Properties of Coal Pyrolysis ................... 241
        8.2.3  The Pyrolysis of Model Compounds Reflecting
               the Pyrolysis Phenomenon of Coal ............... 242
        8.2.4  The Calculation Methods ........................ 242
   8.3  The Pyrolysis Mechanisms of Coal-Related Model
        Compounds ............................................. 243
        8.3.1  The Pyrolysis Mechanisms of Oxygen-
               Containing Model Compounds ..................... 243
               8.3.1.1  Phenol and Furan ...................... 243
               8.3.1.2  Benzoic Acid and Benzaldehyde ......... 246
               8.3.1.3  Anisole ............................... 251
        8.3.2  The Pyrolysis Mechanisms of Nitrogen-
               Containing Model Compounds ..................... 255
               8.3.2.1  Pyrrole and Indole .................... 256
               8.3.2.2  Pyridine .............................. 258
               8.3.2.3  2-Picoline ............................ 260
               8.3.2.4  Quinoline and Isoquinoline ............ 263
        8.3.3  The Pyrolysis Mechanisms of Sulfur-Containing
               Model Compounds ................................ 267
               8.3.3.1  Thiophene ............................. 268
               8.3.3.2  Benzenethiol .......................... 270
   8.4  Conclusion ............................................ 276
   References ................................................. 276
9  Initio Kinetic Modeling of Free-Radical Polymerization ..... 283
   Michelle L. Coote
   9.1  Introduction .......................................... 283
        9.1.1  Free-Radical Polymerization Kinetics ........... 283
        9.1.2  Scope of this Chapter .......................... 286
   9.2  Ab Initio Kinetic Modeling ............................ 287
        9.2.1  Conventional Kinetic Modeling .................. 287
        9.2.2  Ab Initio Kinetic Modeling ..................... 289
   9.3  Quantum Chemical Methodology .......................... 291
        9.3.1  Model Systems .................................. 291
        9.3.2  Theoretical Procedures ......................... 293
   9.4  Case Study: RAFT Polymerization ....................... 296
   9.5  Outlook ............................................... 300
   References ................................................. 301
10 Intermolecrfar Electron Transfer Reactivity for Organic
   Compounds Studied Using Marcus Cross-Rate Theory ........... 305
   Stephen F. Neben and Jack R. Pladziewicz
   10.1 Introduction .......................................... 305
   10.2 Determination of ΔGiifig.3 (fit) Values ................... 307
   10.3 Why is the Success of Cross-Rate Theory Surprising? ... 309
   10.4 Major Factors Determining Intrinsic Reactivities of
        Hydrazine Couples ..................................... 310
   10.5 Nonhydrazine Couples .................................. 315
   10.6 Comparison of ΔGiifig.3 (fit) with ΔGiifig.3 (self) Values .... 318
   10.7 Estimation of Hab from Experimental Exchange Rate
        Constants and DFT-Computed λ .......................... 320
   10.8 Comparison with Gas-Phase Reactions ................... 333
   10.9 Conclusions ........................................... 333
   References ................................................. 334

INDEX ......................................................... 337


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:10 2019. Размер: 21,365 bytes.
Посещение N 1365 c 20.08.2013