PREFACE ...................................................... xiii
Herbert DaCosta and Maohong Fan
CONTRIBUTORS ................................................... xv
PART I METHODS ................................................. j
1 Overview of Thermochemistry and Its Application to
Reaction Kinetics ............................................ 3
Elke Goos and Alexander Burcat
1.1 History of Thermochemistry .............................. 3
1.2 Thermochemical Properties ............................... 5
1.3 Consequences of Thermodynamic Laws to Chemical
Kinetics ................................................ 8
1.4 How to Get Thermochemical Values? ....................... 9
1.4.1 Measurement of Thermochemical Values ............ 10
1.4.2 Calculation of Thermochemical Values ............ 10
1.4.2.1 Quantum Chemical Calculations of
Molecular Properties ................... 19
1.4.2.2 Calculation of Thermodynamic
Functions from Molecular Properties .... 22
1.5 Accuracy of Thermochemical Values ...................... 16
1.5.1 Standard Enthalpies of Formation ................ 16
1.5.2 Active Thermochemical Tables .................... 18
1.6 Representation of Thermochemical Data for Use in
Engineering Applications ............................... 21
1.6.1 Representation in Tables ........................ 21
1.6.2 Representation with Group Additivity Values ..... 21
1.6.3 Representation as Polynomials ................... 22
1.6.3.1 How to Change Δ H298K Without
Recalculating NASA Polynomials ......... 25
1.7 Thermochemical Databases ............................... 26
1.8 Conclusion ............................................. 27
References .................................................. 27
2 Calculation of Kinetic Data Using Computational Methods ..... 33
Fernando P. Cossío
2.1 Introduction ........................................... 33
2.2 Stationary Points and Potential Energy Hypersurfaces ... 34
2.3 Calculation of Reaction and Activation Energies:
Levels of Theory and Solvent Effects ................... 38
2.3.1 Hartree-Fock and Post-Hartree-Fock Methods ...... 38
2.3.2 Methods Based on Density Functional Theory ...... 41
2.3.3 Computational Treatment of Solvent Effects ...... 44
2.4 Estimate of Relative Free Energies: Standard States .... 47
2.5 Theoretical Approximate Kinetic Constants and
Treatment of Data ...................................... 50
2.6 Selected Examples ...................................... 51
2.6.1 Relative Reactivities of Phosphines in Aza-
Wittig Reactions ................................ 52
2.6.2 Origins of the Stereocontrol in the Staudinger
Reaction Between Ketenes and Imines to Form
β-Lactams ....................................... 54
2.6.3 Origins of the Stereocontrol in the Reaction
Between Imines and Homophthalic Anhydride ....... 58
2.7 Conclusions and Outlook ................................ 61
References .................................................. 62
3 Quantum Instanton Evaluation of the Kinetic Isotope
Effects and of the Temperature Dependence of the Rate
Constant .................................................... 67
Jiří Vaníćek
3.1 Introduction ........................................... 67
3.2 Arrhenius Equation, Transition State Theory, and the
Wigner Tunneling Correction ............................ 68
3.3 Quantum Instanton Approximation for the Rate Constant .. 69
3.4 Kinetic Isotope Effects ................................ 71
3.4.1 Transition State Theory Framework for KIE ....... 71
3.4.2 Quantum Instanten Approach and the
Thermodynamic Integration with Respect to the
Isotope Mass .................................... 72
3.5 Temperature Dependence of the Rate Constant ............ 73
3.5.1 Transition State Theory Framework for the
Temperature Dependence of k(T) .................. 73
3.5.2 Quantum Instanten Approach and the
Thermodynamic Integration with Respect to the
Inverse Temperature ............................. 74
3.6 Path Integral Representation of Relevant Quantities .... 75
3.6.1 Path Integral Formalism ......................... 75
3.6.2 Estimators ...................................... 76
3.6.3 Estimators for Er ............................... 11
3.6.4 Estimators for E ............................... 78
3.6.5 Estimators for the Derivatives of Fr and F
with Respect to Mass ............................ 79
3.6.6 Statistical Errors and Efficiency ............... 79
3.6.7 Treatment of Potential Energy Surfaces for
Many-Dimensional Systems ........................ 80
3.7 Examples ............................................... 81
3.7.1 Eckart Barrier .................................. 81
3.7.2 Full-Dimensional H + H2 → H2 + H Reaction ....... 84
3.7.3 [1,5]-Sigmatropic Hydrogen Shift in cis-l,3-
Pentadiene ...................................... 86
3.8 Summary ................................................ 88
Appendix: Reactions ......................................... 89
Acknowledgments ............................................. 89
References .................................................. 89
4 Activation Energies in Computational Chemistry - A Case
Study ....................................................... 93
Michael Busch, Elisabet Ahlberg and Itai Panas
4.1 Introduction ........................................... 93
4.2 Context and Theoretical Background ..................... 95
4.2.1 Density Functional Theory ....................... 95
4.2.2 Calculating Transition States ................... 98
4.2.3 The Tyrosine/Tyrosyl-Radical Reference
Potential ....................................... 98
4.3 Computational Details .................................. 99
4.4 Recent Advances and New Results ........................ 99
4.4.1 Homogenous OER Catalysts ........................ 99
4.4.2 Embedded Transition Metal Dimers ............... 102
4.5 Concluding Remarks .................................... 107
Acknowledgments ............................................ 108
References ................................................. 109
5 No Barrier Theory - A New Approach to Calculating Rate
Constants in Solution ...................................... 113
J. Peter Guthrie
5.1 Introduction .......................................... 113
5.2 The Idea Behind No Barrier Theory ..................... 114
5.3 How to Define the Surface and Find the Transition
State ................................................. 118
5.4 What is Needed for a Calculation? ..................... 124
5.5 Applications to Date .................................. 125
5.5.1 Proton Transfer Reactions ...................... 125
5.5.2 Addition of Water to Carbonyls ................. 126
5.5.3 Cyanohydrin Formation .......................... 130
5.5.4 The Reaction of Carbocations With Either
Water or Azide Ion ............................. 131
5.5.5 Decarboxylation ................................ 134
5.5.6 The E2 Elimination Reaction .................... 136
5.5.7 The Strecker Reaction .......................... 138
5.5.8 The Aldol Addition ............................. 138
5.6 Future Prospects for NBT .............................. 140
5.7 Summary ............................................... 141
References ................................................. 142
PART II MINIREVIEWS AND APPLICATIONS ......................... 147
6 Quantum Chemical and Rate Constant Calculations of
Thermal Isomerizations, Decompositions, and Ring
Expansions of Organic Ring Compounds, Its Significance to
Cohbusion Kinetics ......................................... 149
Faina Dubnikova and Assa Lifshitz
6.1 Prologue .............................................. 149
6.1.1 Introduction ................................... 149
6.1.2 Quantum Chemical Calculations .................. 150
6.1.3 Rate Constant Calculations ..................... 151
6.1.4 Experimental Methods ........................... 152
6.2 Small Organic Ring Compounds .......................... 152
6.2.1 Cyclopropane ................................... 152
6.2.2 Cyclopropane Carbonitrile ...................... 153
6.2.3 The Epoxy Family of Molecules .................. 154
6.3 Pyrrole and Indole .................................... 156
6.3.1 Pyrrole ........................................ 156
6.3.2 Indole ......................................... 157
6.4 Dihydrofurans and Dihydrobenzofurans .................. 160
6.4.1 2,3-Dihydrofuran ............................... 160
6.4.2 5-Methyl-2,3-Dihydrofuran ...................... 160
6.4.3 Van der Waals Interactions in H2 Elimination:
2,5-Dihydrofuran ............................... 161
6.4.4 Dihydrobenzofuran and iso-Dihydrobenzofuran .... 163
6.5 Naphthyl Acetylene-Naphthyl Ethylene .................. 166
6.6 Ring Expansion Processes .............................. 168
6.6.1 Methylcyclopentadiene .......................... 169
6.6.2 Methyl Pyrrole ................................. 170
6.6.3 Methylindene and Methylindole .................. 171
6.7 Benzoxazole-Benzisoxazoles ............................ 173
6.7 L Benzoxazole ......................................... 174
6.7.2 1,2-Benzisoxazole .............................. 174
6.7.3 2,1-Benzisoxazole - Intersystem Crossing ....... 176
6.8 Conclusion ............................................ 181
Acknowledgment ............................................. 185
References ................................................. 185
7 Challenges in the Computation of Rate Constants for
Lignin Model Compounds ..................................... 191
Ariana Beste and A.C. Buchanan, III
7.1 Lignin: A Renewable Source of Fuels and Chemicals ..... 191
7.1.1 Origin and Chemical Structure .................. 193
7.1.2 Processing Techniques and Challenges ........... 195
7.2 Mechanistic Study of Lignin Model Compounds ........... 196
7.2.1 Experimental Work .............................. 197
7.2.2 Computational Work ............................. 201
7.3 Computational Investigation of the Pyrolysis of
β-O-4 Model Compounds ................................. 201
7.3.1 Methodology .................................... 202
7.3.1.1 Overview .............................. 202
7.3.1.2 Transition State Theory ............... 203
7.3.1.3 Anharmonic Corrections ................ 207
7.3.2 Analytical Kinetic Models ...................... 210
7.3.2.1 Parallel Reactions .................... 210
7.3.2.2 Series of First-Order Reactions ....... 211
7.3.2.3 Product Selectivity for the
Pyrolysis of PPE ...................... 211
7.3.3 Numerical Integration .......................... 213
7.4 Case Studies: Substituent Effects on Reactions of
Phenethyl Phenyl Ethers ............................... 214
7.4.1 Computational Details .......................... 215
7.4.2 Initiation: Homolytic Cleavage ................. 215
7.4.3 Hydrogen Abstraction Reactions and
α/β-Selectivities .............................. 217
7.4.3.1 PPE and PPE Derivatives with
Substituents on Phenethyl Group ....... 217
7.4.3.2 PPE and PPE Derivatives with
Substituents on Phenyl Group
Adjacent to Ether Oxygen .............. 221
7.4.4 Phenyl Rearrangement ........................... 229
7.5 Conclusions and Outlook ............................... 232
Acknowledgments ............................................ 234
Appendix Summary of Kinetic Parameters ..................... 234
References ................................................. 235
8 Quantum Chemistry Study on the Pyrolysis Mechanisms of
Coal-Related Model Compounds ............................... 239
Baojun Wang, Riguang Zhang and Lixia Ling
8.1. Introduction to the Application of Quantum Chemistry
Calculation to Investigation on Models of Coal Structure ... 239
8.2 The Model for Coal Structure and Calculation Methods .. 240
8.2.1 The Proposal of Local Microstructure Model
of Coal ........................................ 240
8.2.2 Coal-Related Model Compounds Describing the
Properties of Coal Pyrolysis ................... 241
8.2.3 The Pyrolysis of Model Compounds Reflecting
the Pyrolysis Phenomenon of Coal ............... 242
8.2.4 The Calculation Methods ........................ 242
8.3 The Pyrolysis Mechanisms of Coal-Related Model
Compounds ............................................. 243
8.3.1 The Pyrolysis Mechanisms of Oxygen-
Containing Model Compounds ..................... 243
8.3.1.1 Phenol and Furan ...................... 243
8.3.1.2 Benzoic Acid and Benzaldehyde ......... 246
8.3.1.3 Anisole ............................... 251
8.3.2 The Pyrolysis Mechanisms of Nitrogen-
Containing Model Compounds ..................... 255
8.3.2.1 Pyrrole and Indole .................... 256
8.3.2.2 Pyridine .............................. 258
8.3.2.3 2-Picoline ............................ 260
8.3.2.4 Quinoline and Isoquinoline ............ 263
8.3.3 The Pyrolysis Mechanisms of Sulfur-Containing
Model Compounds ................................ 267
8.3.3.1 Thiophene ............................. 268
8.3.3.2 Benzenethiol .......................... 270
8.4 Conclusion ............................................ 276
References ................................................. 276
9 Initio Kinetic Modeling of Free-Radical Polymerization ..... 283
Michelle L. Coote
9.1 Introduction .......................................... 283
9.1.1 Free-Radical Polymerization Kinetics ........... 283
9.1.2 Scope of this Chapter .......................... 286
9.2 Ab Initio Kinetic Modeling ............................ 287
9.2.1 Conventional Kinetic Modeling .................. 287
9.2.2 Ab Initio Kinetic Modeling ..................... 289
9.3 Quantum Chemical Methodology .......................... 291
9.3.1 Model Systems .................................. 291
9.3.2 Theoretical Procedures ......................... 293
9.4 Case Study: RAFT Polymerization ....................... 296
9.5 Outlook ............................................... 300
References ................................................. 301
10 Intermolecrfar Electron Transfer Reactivity for Organic
Compounds Studied Using Marcus Cross-Rate Theory ........... 305
Stephen F. Neben and Jack R. Pladziewicz
10.1 Introduction .......................................... 305
10.2 Determination of ΔGii (fit) Values ................... 307
10.3 Why is the Success of Cross-Rate Theory Surprising? ... 309
10.4 Major Factors Determining Intrinsic Reactivities of
Hydrazine Couples ..................................... 310
10.5 Nonhydrazine Couples .................................. 315
10.6 Comparison of ΔGii (fit) with ΔGii (self) Values .... 318
10.7 Estimation of Hab from Experimental Exchange Rate
Constants and DFT-Computed λ .......................... 320
10.8 Comparison with Gas-Phase Reactions ................... 333
10.9 Conclusions ........................................... 333
References ................................................. 334
INDEX ......................................................... 337
|