O'Meara K.C. Advanced topics in linear algebra: weaving matrix problems through the Weyr Form (Oxford; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаO'Meara K.C. Advanced topics in linear algebra: weaving matrix problems through the Weyr Form / K.C.O'Meara, J.Clark, C.I.Vinsonhaler. - Oxford; New York: Oxford University Press, 2011. - xxii, 400 p.: ill. - Bibliogr.: p.384-389. - Ind.: p.390-400. - ISBN 978-0-19-979373-0
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xi
Our Style .................................................... xvii
Acknowledgments ............................................... xxi

PART ONE: The Weyr Fonn and Its Properties ...................... 1
1  Background Linear Algebra .................................... 3
   1.1  The Most Basic Notions .................................. 4
   1.2  Blocked Matrices ....................................... 11
   1.3  Change of Basis and Similarity ......................... 17
   1.4  Diagonalization ........................................ 22
   1.5  The Generalized Eigenspace Decomposition ............... 27
   1.6  Sylvester's Theorem on the Matrix Equation AX — XB =
        С ...................................................... 33
   1.7  Canonical Forms for Matrices ........................... 35
        Biographical Notes on Jordan and Sylvester ............. 42
2  The Weyr Form ............................................... 44
   2.1  What Is the Weyr Form? ................................. 46
   2.2  Every Square Matrix Is Similar to a Unique Weyr
        Matrix ................................................. 56
   2.3  Simultaneous Triangularization ......................... 65
   2.4  The Duality between the Jordan and Weyr Forms .......... 74
   2.5  Computing the Weyr Form 82 Biographical Note on Weyr ... 94
3  Centralizers ................................................ 96
   3.1  The Centralizer of a Jordan Matrix ..................... 97
   3.2  The Centralizer of a Weyr Matrix ...................... 100
   3.3  A Matrix Structure Insight into a Number-Theoretic
        Identity .............................................. 105
   3.4  Leading Edge Subspaces of a Subalgebra ................ 108
   3.5  Computing the Dimension of a Commutative Subalgebra ... 114
   Biographical Note on Frobenius ............................. 123
4  The Module Setting ......................................... 124
   4.1  A Modicum of Modules .................................. 126
   4.2  Direct Sum Decompositions ............................. 135
   4.3  Free and Projective Modules ........................... 144
   4.4  Von Neumann Regularity ................................ 152
   4.5  Computing Quasi-Inverses .............................. 159
   4.6  The Jordan Form Derived Module-Theoretically .......... 169
   4.7  The Weyr Form of a Nilpotent Endomorphism:
        Philosophy ............................................ 174
   4.8  The Weyr Form of a Nilpotent Endomorphism:
        Existence ............................................. 178
   4.9  A Smaller Universe for the Jordan Form? ............... 185
   4.10 Nilpotent Elements with Regular Powers ................ 188
   4.11 A Regular Nilpotent Element with a Bad Power .......... 195
   Biographical Note on Von Neumann ........................... 197

PART TWO: Applications of the Weyr Form ....................... 199

5  Gerstenhaber's Theorem ..................................... 201
   5.1  k-Generated Subalgebras and Nilpotent Reduction ....... 203
   5.2  The Generalized Cayley-Hamilton Equation .............. 210
   5.3  Proof of Gerstenhaber's Theorem ....................... 216
   5.4  Maximal Commutative Subalgebras ....................... 221
   5.5  Pullbacks and 3-Generated Commutative Subalgebras ..... 226
   Biographical Notes on Cayley and Hamilton .................. 236
6  Approximate Simultaneous Diagonalization ................... 238
   6.1  The Phylogenetic Connection ........................... 241
   6.2  Basic Results on ASD Matrices ......................... 249
   6.3  The Subalgebra Generated by ASD Matrices .............. 255
   6.4  Reduction to the Nilpotent Case ....................... 258
   6.5  Splittings Induced by Epsilon Perturbations ........... 260
   6.6  The Centralizer of ASD Matrices ....................... 265
   6.7  A Nice 2-Correctable Perturbation ..................... 268
   6.8  The Motzkin-Taussky Theorem ........................... 271
   6.9  Commuting Triples Involving a 2-Regular Matrix ........ 276
   6.10 The 2-Regular Nonhomogeneous Case ..................... 287
   6.11 Bounds on dim С[A1, ..., Ak] .......................... 297
   6.12 ASD for Commuting Triples of Low Order Matrices ....... 301
   Biographical Notes on Motzkin and Taussky .................. 307
7  Algebraic Varieties ........................................ 309
   7.1  Affine Varieties and Polynomial Maps .................. 311
   7.2  The Zariski Topology on Affine и-Space ................ 320
   7.3  The Three Theorems Underpinning Basic Algebraic
        Geometry .............................................. 326
   7.4  Irreducible Varieties ................................. 328
   7.5  Equivalence of ASD for Matrices and Irreducibility
        of C(k, n) ............................................ 339
   7.6  Gerstenhaber Revisited ................................ 342
   7.7  Co-Ordinate Rings of Varieties ........................ 347
   7.8  Dimension of a Variety ................................ 353
   7.9  Guralnick's Theorem for C(3, n) ....................... 364
   7.10 Commuting Triples of Nilpotent Matrices ............... 370
   7.11 Proof of the Denseness Theorem ........................ 378
   Biographical Notes on Hilbert and Noether .................. 381

Bibliography .................................................. 384
Index ......................................................... 390


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:10 2019. Размер: 9,418 bytes.
Посещение N 1376 c 20.08.2013