Donaldson S.K. Riemann surfaces (Oxford; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDonaldson S.K. Riemann surfaces. - Oxford; New York: Oxford University Press, 2011. - xiii, 286 p.: ill. - (Oxford graduate texts in mathematics; 22). - Ref.: p.282-283. - Ind.: p.285-286. - ISBN 978-0-19-960674-0
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
PART I PRELIMINARIES

1  Holomorphic functions ........................................ 3
   1.1  Simple examples: algebraic functions .................... 3
   1.2  Analytic continuation: differential equations ........... 5
        Exercises ............................................... 8
2  Surface topology ............................................ 10
   2.1  Classification of surfaces ............................. 10
   2.2  Discussion: the mapping class group .................... 21
   Exercises ................................................... 24

PART II  BASIC THEORY

3  Basic definitions ........................................... 29
   3.1  Riemann surfaces and holomorphic maps .................. 29
   3.2  Examples ............................................... 31
        3.2.1  First examples .................................. 31
        3.2.2  Algebraic curves ................................ 32
        3.2.3  Quotients ....................................... 36
   Exercises ................................................... 40
4  Maps between Riemann surfaces ............................... 42
   4.1  General properties ..................................... 42
   4.2  Monpdromy and the Riemann Existence Theorem ............ 45
        4.2.1  Digression into algebraic topology .............. 45
        4.2.2  Monodromy of covering maps ...................... 48
        4.2.3  Compactifying algebraic curves .................. 50
        4.2.4  The Riemann surface of a holomorphic function ... 54
        4.2.5  Quotients ....................................... 55
   Exercises ................................................... 56

PART III  DEEPER THEORY

5  Calculus on surfaces ........................................ 57
   5.1  Smooth surfaces ........................................ 57
        5.1.1  Cotangent spaces and 1-forms .................... 57
        5.1.2  2-forms and integration ......................... 61
   5.2  de Rham cohomology ..................................... 67
        5.2.1  Definition and examples ......................... 67
        5.2.2  Cohomology with compact support, and Poincare
               duality ......................................... 70
   5.3  Calculus on Riemann surfaces ........................... 73
        5.3.1  Decomposition of the 1-forms .................... 73
        5.3.2  The Laplace operator and harmonic functions ..... 77
        5.3.3  The Dirichlet norm .............................. 78
   Exercises ................................................... 81
6  Elliptic functions and integrals ............................ 82
   6.1  Elliptic integrals ..................................... 82
   6.2  The Weierstrass p function ............................. 86
   6.3  Further topics ......................................... 88
        6.3.1  Theta functions ................................. 88
        6.3.2  Classification .................................. 91
   Exercises ................................................... 96
7  Applications of the Euler characteristic .................... 97
   7.1  The Euler characteristic and meromorphic forms ......... 97
        7.1.1  Topology ........................................ 97
        7.1.2  Meromorphic forms ............................... 99
   7.2  Applications .......................................... 100
        7.2.1  The Riemann-Hurwitz formula .................... 100
        7.2.2  The degree-genus formula ....................... 102
        7.2.3  Real structures and Harnack's bound ............ 103
        7.2.4  Modular curves ................................. 105
   Exercises .................................................. 107
8  Meromorphic functions and the Main Theorem for compact
   Riemann surfaces ........................................... 111
   8.1  Consequences of the Main Theorem ...................... 113
   8.2  The Riemann-Roch formula .............................. 115
   Exercises .................................................. 117
9  Proof of the Main Theorem .................................. 118
   9.1  Discussion and motivation ............................. 118
   9.2  The Riesz Representation Theorem ...................... 120
   9.3  The heart of the proof ................................ 122
   9.4  Weyl's Lemma .......................................... 126
   Exercises .................................................. 129
10 The Uniformisation Theorem ................................. 131
   10.1 Statement ............................................. 131
   10.2 Proof of the analogue of the Main Theorem ............. 133
        10.2.1 Set-up ......................................... 133
        10.2.2 Classification of behaviour at infinity ........ 135
        10.2.3 The main argument .............................. 138
        10.2.4 Proof of Proposition 30 ........................ 141
   Exercises .................................................. 142

PART IV  FURTHER DEVELOPMENTS
11 Contrasts in Riemann surface theory ........................ 147
   11.1 Algebraic aspects ..................................... 147
        11.1.1 Fields of meromorphic functions ................ 147
        11.1.2 Valuations ..................................... 151
        11.1.3 Connections with algebraic number theory ....... 156
   11.2 Hyperbolic surfaces ................................... 159
        11.2.1 Definitions .................................... 159
        11.2.2 Models of the hyperbolic plane ................. 161
        11.2.3 Self-isometries ................................ 163
        11.2.4 Hyperbolic surfaces ............................ 164
        11.2.5 Geodesies ...................................... 164
        11.2.6 Discussion ..................................... 167
        11.2.7 The Gauss-Bonnet Theorem ....................... 169
        11.2.8 Right-angled hexagons .......................... 171
        11.2.9 Closed geodesies ............................... 173
   Exercises .................................................. 177
12 Divisors, line bundles and Jacobians ....................... 178
   12.1 Cohomology and line bundles ........................... 178
        12.1.1 Sheaves and cohomology ......................... 178
        12.1.2 Line bundles ................................... 182
        12.1.3 Line bundles and projective embeddings ......... 188
        12.1.4 Divisors and unique factorisation .............. 194
   12.2 Jacobians of Riemann surfaces ......................... 196
        12.2.1 The Abel-Jacobi Theorem ........................ 196
        12.2.2 Abstract theory ................................ 198
        12.2.3 Geometry of symmetric products ................. 199
        12.2.4 Remarks in the direction of algebraic
               topology ....................................... 201
        12.2.5 Digression into projective geometry ............ 203
   Exercises .................................................. 208
13 Moduli and deformations .................................... 210
   13.1 Almost-complex structures, Beltrami differentials
        and the integrability theorem ......................... 210
   13.2 Deformations and cohomology ........................... 214
   13.3 Appendix .............................................. 220
   Exercises .................................................. 226
14 Mappings and moduli ........................................ 227
   14.1 Diffeomorphisms of the plane .......................... 227
   14.2 Braids, Dehn twists and quadratic singularities ....... 229
        14.2.1 Classification of branched covers .............. 229
        14.2.2 Monodromy and Dehn twists ...................... 236
        14.2.3 Plane curves ................................... 240
   14.3 Hyperbolic geometry ................................... 243
   14.4 Compactification of the moduli space .................. 249
        14.4.1 Collars and cusps .............................. 252
   Exercises .................................................. 259
15 Ordinary differential equations ............................ 260
   15.1 Conformal mapping ..................................... 260
   15.2 Periods of holomorphic forms and ordinary
        differential equations ................................ 267
        15.2.1 The hypergeometric equation .................... 267
        15.2.2 The Gauss-Manin connection ..................... 269
        15.2.3 Singular points ................................ 272
   Exercises .................................................. 281

References .................................................... 282
Index ......................................................... 285


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:08 2019. Размер: 12,543 bytes.
Посещение N 1446 c 20.08.2013