Preface ....................................................... vii
Acknowledgments ................................................ ix
Introduction ................................................... xi
About the author ............................................... xv
Chapter 1 Fundamentals of the theory of hindered molecular
motion .......................................................... 1
1.1 Problem of hindered molecular motion ....................... 1
1.2 Basis of the angular autocorrelation function technique .... 3
1.3 Autocorrelation functions adapted to the RD and FAJ
models ..................................................... 6
Chapter 2 Solution of the stochastic problem for the extended
angular jump model .............................................. 9
2.1 Description of the extended angular jump model ............. 9
2.2 Solution of the stochastic problem ........................ 13
Chapter 3 Autocorrelation functions adapted to the extended
angular jump model ............................................. 21
3.1 General form of the autocorrelation functions ............. 21
3.2 Autocorrelation functions of the first rank ............... 24
3.2.1 Point symmetry groups of the cubic systems О and
T .................................................. 32
3.2.2 Point groups of the axial symmetry Cn (n = 3,4,6) .. 34
3.2.3 Point symmetry groups Dn (n = 3,4,6) ............... 38
3.2.4 Point symmetry group D2 ............................ 40
3.2.5 Point symmetry group C2 ............................ 42
3.3 Autocorrelation functions of the arbitrary rank ........... 44
3.4 Discussion ................................................ 52
Chapter 4 Dielectric and optical spectroscopy applications .... 55
4.1 Frequency domain dielectric spectroscopy .................. 55
4.2 Shape of polarized infrared absorption spectroscopy
lines ..................................................... 60
4.3 Line shape of Rayleigh and Raman light scattering ......... 64
4.4 Discussion and comparison with the experiment ............. 69
Chapter 5 Nuclear magnetic resonance spin-lattice relaxation
applications ................................................... 77
5.1 Generality of the nuclear magnetic resonance relaxation ... 77
5.2 Relaxation through the motion adapted to the cubic
symmetry groups ........................................... 79
5.3 Proton relaxation in crystalline ammonium chloride ........ 82
5.3.1 Preamble ........................................... 82
5.3.2 Slow-motion regime of ammonium cations ............. 83
5.3.3 Fast-motion regime of ammonium cations ............. 86
5.3.4 Notes on the ammonium reorientation probabilities .. 87
5.3.5 Motion and site symmetry of ammonium cations ....... 88
5.3.6 Relaxation of protons and deuterons in powder
ammonium chloride .................................. 90
5.4 Proton relaxation in three-atomic molecular fragments
undergoing axial symmetry hindered motion ................. 90
Chapter 6 Incoherent neutron scattering applications .......... 99
6.1 Preamble .................................................. 99
6.2 Basis of the theory of incoherent neutron scattering ..... 105
6.3 Incoherent neutron scattering function adapted to the
EAJ model ................................................ 107
6.4 Discussion and comparison with the experiment ............ 110
6.4.1 Theoretical outcomes .............................. 110
6.4.2 Experimental applications ......................... 115
6.4.2.1 Rubidium hydrosulphide RbSH .............. 115
6.4.2.2 Zinc tetraamine Perchlorate [Zn(NH3)4]
(СlO4)2 .................................. 117
6.4.2.3 Ammonium zinc trifluoride NH4ZnF3 ........ 118
References .................................................... 123
Index ......................................................... 131
|