Turbulence, coherent structures, dynamical systems and symmetry (Cambridge; New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаTurbulence, coherent structures, dynamical systems and symmetry / Ph.Holmes et al. - 2nd ed. - Cambridge; New York: Cambridge University Press, 2012. - xvi, 386 p.: ill. - (Cambridge monographs on mechanics). - Ref.: p.364-381. - Ind.: p.382-386. - ISBN 978-1-107-00825-0
 

Оглавление / Contents
 
Preface to the first edition	page .............................. ix
Preface to the second edition ................................ xiii
Acknowledgements ............................................... xv

PART ONE TURBULENCE ............................................. 1
1  Introduction ................................................. 3
   1.1  Turbulence .............................................. 3
   1.2  Low-dimensional models .................................. 5
   1.3  The contents of this book ............................... 8
   1.4  Notation and mathematical jargon ....................... 11
2  Coherent structures ......................................... 17
   2.1  Introduction ........................................... 17
   2.2  Flows with coherent structures ......................... 21
   2.3  Detection of coherent structures ....................... 32
   2.4  The mixing layer ....................................... 35
   2.5  The turbulent boundary layer ........................... 50
   2.6  A preview of things to come ............................ 65
3  Proper orthogonal decomposition ............................. 68
   3.1  Introduction ........................................... 69
   3.2  On domains and averaging ............................... 73
   3.3  Properties of the POD .................................. 74
   3.4  Further results ........................................ 86
   3.5  Stochastic estimation .................................. 91
   3.6  Coherent structures and homogeneity .................... 93
   3.7  Some applications ...................................... 96
   3.8  Appendix: some foundations ............................ 100
4  Galerkin projection ........................................ 106
   4.1  Introduction .......................................... 106
   4.2  Some simple PDEs revisited ............................ 110
   4.3  The Navier-Stokes equations ........................... 116
   4.4  Towards low-dimensional models ........................ 121
5  Balanced proper orthogonal decomposition ................... 130
   5.1  Balanced truncation ................................... 131
   5.2  Balanced POD .......................................... 133
   5.3  Output projection ..................................... 136
   5.4  Connections with standard POD ......................... 137
   5.5  Extensions of balanced POD ............................ 139
   5.6  Some examples ......................................... 143

PART TWO  DYNAMICAL SYSTEMS ................................... 153

6  Qualitative theory ......................................... 155
   6.1  Linearization and invariant manifolds ................. 156
   6.2  Periodic orbits and Poincare maps ..................... 162
   6.3  Structural stability and genericity ................... 165
   6.4  Bifurcations local and global ......................... 168
   6.5  Attractors simple and strange ......................... 179
7  Symmetry ................................................... 190
   7.1  Equivariant vector fields ............................. 190
   7.2  Local bifurcation with symmetry ....................... 194
   7.3  Global behavior with symmetry ......................... 195
   7.4  An 0(2)-equivariantODE ................................ 202
   7.5  Traveling modes ....................................... 211
8  One-dimensional "turbulence" ............................... 214
   8.1  Projection onto Fourier modes ......................... 215
   8.2  Local bifurcations from и = 0 ......................... 217
   8.3  The second bifurcation point .......................... 220
   8.4  Spatio-temporal chaos ................................. 226
9  Randomly perturbed systems ................................. 236
   9.1  An Ornstein-Uhlenbeck process ......................... 237
   9.2  Noisy heteroclinic cycles ............................. 240
   9.3  Power spectra of homoclinic attractors ................ 247
   9.4  Symmetry breaking ..................................... 249

PART THREE  THE BOUNDARY LAYER ................................ 253

10 Low-dimensional models ..................................... 255
   10.1 Equations for coherent structures ..................... 256
   10.2 The eigenfunction expansion ........................... 259
   10.3 Symmetries ............................................ 260
   10.4 Galerkin projection ................................... 262
   10.5 Geometrical structure of the model .................... 269
   10.6 Choosing subspaces and domains ........................ 272
   10.7 The energy budget ..................................... 275
   10.8 Nonlinear feedback .................................... 281
   10.9 Interaction with unresolved modes ..................... 285
11 Behavior of the models ..................................... 289
   11.1 Backbones for the models .............................. 290
   11.2 Heteroclinic cycles ................................... 293
   11.3 Bursts and sweeps ..................................... 297
   11.4 The pressure term ..................................... 299
   11.5 More modes and instabilities .......................... 303
   11.6 A tentative summary ................................... 307
   11.7 Appendix: coefficients ................................ 312

PART FOUR  OTHER APPLICATIONS AND RELATED WORK ................ 315

12 Some other fluid problems .................................. 317
   12.1 The circular jet ...................................... 317
   12.2 The transitional boundary layer ....................... 321
   12.3 A forced transitional mixing layer .................... 326
   12.4 Flows in complex geometries ........................... 328
   12.5 "Full channel" wall layer models ...................... 331
   12.6 Flows in internal combustion engines .................. 335
   12.7 A miscellany of results: 1995-2011 .................... 341
   12.8 Discussion ............................................ 342
13 Review: prospects for rigor ................................ 345
   13.1 The quality of models ................................. 345
   13.2 A short-time tracking estimate ........................ 349
   13.3 Stability, simulations, and statistics ................ 352
   13.4 Spatial localization .................................. 356
   13.5 The utility of models ................................. 360
   References ................................................. 364
Index ......................................................... 382


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:06 2019. Размер: 10,486 bytes.
Посещение N 1082 c 13.08.2013