Singh V.P. Entropy theory and its application in environmental and water engineering (Chichester, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSingh V.P. Entropy theory and its application in environmental and water engineering. - Chichester: Wiley-Blackwell, 2013. - xx, 642 p.: ill. - Incl. bibl. ref. and indexes. - ISBN 978-1-119-97656-1
 

Место хранения: 067 | Лимнологический институт CO РАН | Иркутск

Оглавление / Contents
 
Preface ........................................................ xv
Acknowledgments ............................................... xix

1  Introduction ................................................. 1
   1.1  Systems and their characteristics ....................... 1
        1.1.1  Classes of systems ............................... 1
        1.1.2  System states .................................... 1
        1.1.3  Change of state .................................. 2
        1.1.4  Thermodynamic entropy ............................ 3
        1.1.5  Evolutive connotation of entropy ................. 5
        1.1.6  Statistical mechanical entropy ................... 5
   1.2  Informational entropies ................................. 7
        1.2.1  Types of entropies ............................... 8
        1.2.2  Shannon entropy .................................. 9
        1.2.3  Information gain function ....................... 12
        1.2.4  Boltzmann, Gibbs and Shannon entropies .......... 14
        1.2.5  Negentropy ...................................... 15
        1.2.6  Exponential entropy ............................. 16
        1.2.7  Tsallis entropy ................................. 18
        1.2.8  Renyi entropy ................................... 19
   1.3  Entropy, information, and uncertainty .................. 21
        1.3.1  Information ..................................... 22
        1.3.2  Uncertainty and surprise ........................ 24
   1.4  Types of uncertainty ................................... 25
   1.5  Entropy and related concepts ........................... 27
        1.5.1  Information content of data ..................... 27
        1.5.2  Criteria for model selection .................... 28
        1.5.3  Hypothesis testing .............................. 29
        1.5.4  Risk assessment ................................. 29
   Questions ................................................... 29
   References .................................................. 31
   Additional References ....................................... 32
2  Entropy Theory .............................................. 33
   2.1  Formulation of entropy ................................. 33
   2.2  Shannon entropy ........................................ 39
   2.3  Connotations of information and entropy ................ 42
        2.3.1  Amount of information ........................... 42
        2.3.2  Measure of information .......................... 43
        2.3.3  Source of information ........................... 43
        2.3.4  Removal of uncertainty .......................... 44
        2.3.5  Equivocation .................................... 45
        2.3.6  Average amount of information ................... 45
        2.3.7  Measurement system .............................. 46
        2.3.8  Information and organization .................... 46
   2.4  Discrete entropy: univariate case and marginal
        entropy ................................................ 46
   2.5  Discrete entropy: bivariate case ....................... 52
        2.5.1  Joint entropy ................................... 53
        2.5.2  Conditional entropy ............................. 53
        2.5.3  Transinformation ................................ 57
   2.6  Dimensionless entropies ................................ 79
   2.7  Bayes theorem .......................................... 80
   2.8  Informational correlation coefficient .................. 88
   2.9  Coefficient of nontransferred information .............. 90
   2.10 Discrete entropy: multidimensional case ................ 92
   2.11 Continuous entropy ..................................... 93
        2.11.1 Univariate case ................................. 94
        2.11.2 Differential entropy of continuous variables .... 97
        2.11.3 Variable transformation and entropy ............. 99
        2.11.4 Bivariate case ................................. 100
        2.11.5 Multivariate case .............................. 105
   2.12 Stochastic processes and entropy ...................... 105
   2.13 Effect of proportional class interval ................. 107
   2.14 Effect of the form of probability distribution ........ 110
   2.15 Data with zero values ................................. 111
   2.16 Effect of measurement units ........................... 113
   2.17 Effect of averaging data .............................. 115
   2.18 Effect of measurement error ........................... 116
   2.19 Entropy in frequency domain ........................... 118
   2.20 Principle of maximum entropy .......................... 118
   2.21 Concentration theorem ................................. 119
   2.22 Principle of minimum cross entropy .................... 122
   2.23 Relation between entropy and error probability ........ 123
   2.24 Various interpretations of entropy .................... 125
        2.24.1  Measure of randomness or disorder ............. 125
        2.24.2  Measure of unbiasedness or objectivity ........ 125
        2.24.3  Measure of equality ........................... 125
        2.24.4  Measure of diversity .......................... 126
        2.24.5  Measure of lack of concentration .............. 126
        2.24.6  Measure of flexibility ........................ 126
        2.24.1  Measure of complexity ......................... 126
        2.24.8  Measure of departure from uniform
                distribution .................................. 127
        2.24.9  Measure of interdependence .................... 127
        2.24.10 Measure of dependence ......................... 128
        2.24.11 Measure of interactivity ...................... 128
        2.24.12 Measure of similarity ......................... 129
        2.24.13 Measure of redundancy ......................... 129
        2.24.14 Measure of organization ....................... 130
   2.25 Relation between entropy and variance ................. 133
   2.26 Entropy power ......................................... 135
   2.27 Relative frequency .................................... 135
   2.28 Application of entropy theory ......................... 136
   Questions .................................................. 136
   References ................................................. 137
   Additional Reading ......................................... 139
3  Principle of Maximum Entropy ............................... 142
   3.1  Formulation ........................................... 142
   3.2  POME formalism for discrete variables ................. 145
   3.3  POME formalism for continuous variables ............... 152
        3.3.1  Entropy maximization using the method of
               Lagrange multipliers ........................... 152
        3.3.2  Direct method for entropy maximization ......... 157
   3.4  POME formalism for two variables ...................... 158
   3.5  Effect of constraints on entropy ...................... 165
   3.6  Invariance of total entropy ........................... 167
   Questions .................................................. 168
   References ................................................. 170
   Additional Reading ......................................... 170
4  Derivation of Pome-Based Distributions ..................... 172
   4.1  Discrete variable and discrete distributions .......... 172
        4.1.1  Constraint E[x] and the Maxwell-Boltzmann
               distribution ................................... 172
        4.1.2  Two constraints and Bose-Einstein
               distribution ................................... 174
        4.1.3  Two constraints and Fermi-Dirac distribution ... 177
        4.1.4  Intermediate statistics distribution ........... 178
        4.1.5  Constraint: E[N]: Bernoulli distribution for
               a single trial ................................. 179
        4.1.6  Binomial distribution for repeated trials ...... 180
        4.1.7  Geometric distribution: repeated trials ........ 181
        4.1.8  Negative binomial distribution: repeated
               trials ......................................... 183
        4.1.9  Constraint: E[N] = n: Poisson distribution ..... 183
   4.2  Continuous variable and continuous distributions ...... 185
        4.2.1  Finite interval [a, b], no constraint, and
               rectangular distribution ....................... 185
        4.2.2  Finite interval [a, b], one constraint and
               truncated exponential distribution ............. 186
        4.2.3  Finite interval [0, 1], two constraints
               E[lnx] and E[ln(1 — x)] and beta distribution
               of first kind .................................. 188
        4.2.4  Semi-infinite interval (0,∞), one
               constraint E[x] and exponential distribution ... 191
        4.2.5  Semi-infinite interval, two constraints E[x]
               and E[lnx] and gamma distribution .............. 192
        4.2.6  Semi-infinite interval, two constraints
               E[lnx] and E[ln(1 + x)] and beta
               distribution of second kind .................... 194
        4.2.7  Infinite interval, two constraints E[x] and
               E[x2] and normal distribution .................. 195
        4.2.8  Semi-infinite interval, log-transformation
               Y = lnX, two constraints E[y] and E[y2] and
               log-normal distribution ........................ 197
        4.2.9  Infinite and semi-infinite intervals:
               constraints and distributions .................. 199
   Questions .................................................. 203
   References ................................................. 208
   Additional Reading ......................................... 208
5  Multivariate Probability Distributions ..................... 213
   5.1  Multivariate normal distributions ..................... 213
        5.1.1  One time lag serial dependence ................. 213
        5.1.2  Two-lag serial dependence ...................... 221
        5.1.3  Multi-lag serial dependence .................... 229
        5.1.4  No serial dependence: bivariate case ........... 234
        5.1.5  Cross-correlation and serial dependence:
               bivariate case ................................. 238
        5.1.6  Multivariate case: no serial dependence ........ 244
        5.1.7  Multi-lag serial dependence .................... 245
   5.2  Multivariate exponential distributions ................ 245
        5.2.1  Bivariate exponential distribution ............. 245
        5.2.2  Trivariate exponential distribution ............ 254
        5.2.3  Extension to Weibull distribution .............. 257
   5.3  Multivariate distributions using the entropy-copula
        method ................................................ 258
        5.3.1  Families of copula ............................. 259
        5.3.2  Application .................................... 260
   5.4  Copula entropy ........................................ 265
        Questions ............................................. 266
        References ............................................ 267
        Additional Reading .................................... 268
6  Principle of Minimum Cross-Entropy ......................... 270
   6.1  Concept and formulation of POMCE ...................... 270
   6.2  Properties of POMCE ................................... 271
   6.3  POMCE formalism for discrete variables ................ 275
   6.4  POMCE formulation for continuous variables ............ 279
   6.5  Relation to POME ...................................... 280
   6.6  Relation to mutual information ........................ 281
   6.7  Relation to variational distance ...................... 281
   6.8  Lin's directed divergence measure ..................... 282
   6.9  Upper bounds for cross-entropy ........................ 286
   Questions .................................................. 287
   References ................................................. 288
   Additional Reading ......................................... 289
7  Derivation of POME-Based Distributions ..................... 290
   7.1    Discrete variable and mean E[x] as a constraint ..... 290
        7.1.1  Uniform prior distribution ..................... 291
        7.1.2  A rithmetic prior distribution ................. 293
        7.1.3  Geometrie prior distribution ................... 294
        7.1.4  Binomial prior distribution .................... 295
        7.1.5  General prior distribution ..................... 297
   7.2  Discrete variable taking on an infinite set of
        values ................................................ 298
        7.2.1  Improper prior probability distribution ........ 298
        7.2.2  A priori Poisson probability distribution ...... 301
        7.2.3  A priori negative binomial distribution ........ 304
   7.3  Continuous variable: general formulation .............. 305
        7.3.1  Uniform prior and mean constraint .............. 307
        7.3.2  Exponential prior and mean and mean log
               constraints .................................... 308
   Questions .................................................. 308
   References ................................................. 309
8  Parameter Estimation ....................................... 310
   8.1  Ordinary entropy-based parameter estimation method .... 310
        8.1.1  Specification of constraints ................... 311
        8.1.2  Derivation of entropy-based distribution ....... 311
        8.1.3  Construction of zeroth Lagrange multiplier ..... 311
        8.1.4  Determination of Lagrange multipliers .......... 312
        8.1.5  Determination of distribution parameters ....... 313
   8.2  Parameter-space expansion method ...................... 325
   8.3  Contrast with method of maximum likelihood
        estimation (MLE) ...................................... 329
   8.4  Parameter estimation by numerical methods ............. 331
   Questions .................................................. 332
   References ................................................. 333
   Additional Reading ......................................... 334
9  Spatial Entropy ............................................ 335
   9.1  Organization of spatial data .......................... 336
        9.1.1  Distribution, density, and aggregation ......... 337
   9.2  Spatial entropy statistics ............................ 339
        9.2.1  Redundancy ..................................... 343
        9.2.2  Information gain ............................... 345
        9.2.3  Disutility entropy ............................. 352
   9.3  One dimensional aggregation ........................... 353
   9.4  Another approach to spatial representation ............ 360
   9.5  Two-dimensional aggregation ........................... 363
        9.5.1  Probability density function and its
               resolution ..................................... 372
        9.5.2  Relation between spatial entropy and spatial
               disutility ..................................... 375
   9.6  Entropy maximization for modeling spatial phenomena ... 376
   9.7  Cluster analysis by entropy maximization .............. 380
   9.8  Spatial visualization and mapping ..................... 384
   9.9  Scale and entropy ..................................... 386
   9.10 Spatial probability distributions ..................... 388
   9.11 Scaling: rank size rule and Zipf's law ................ 391
        9.11.1 Exponential law ................................ 391
        9.11.2 Log-normal law ................................. 391
        9.11.3 Power law ...................................... 392
        9.11.4 Law of proportionate effect .................... 392
   Questions .................................................. 393
   References ................................................. 394
   Further Reading ............................................ 395
10 Inverse Spatial Entropy .................................... 398
   10.1 Definition ............................................ 398
   10.2 Principle of entropy decomposition .................... 402
   10.3 Measures of information gain .......................... 405
        10.3.1 Bivariate measures ............................. 405
        10.3.2 Map representation ............................. 410
        10.3.3 Construction of spatial measures ............... 412
   10.4 Aggregation properties ................................ 417
   10.5 Spatial interpretations ............................... 420
   10.6 Hierarchical decomposition ............................ 426
   10.7 Comparative measures of spatial decomposition ......... 428
   Questions .................................................. 433
   References ................................................. 435
11 Entropy Spectral Analyses .................................. 436
   11.1 Characteristics of time series ........................ 436
        11.1.1 Mean ........................................... 437
        11.1.2 Variance ....................................... 438
        11.1.3 Covariance ..................................... 440
        11.1.4 Correlation .................................... 441
        11.1.5 Stationarity ................................... 443
   11.2 Spectral analysis ..................................... 446
        11.2.1 Fourier representation ......................... 448
        11.2.2 Fourier transform .............................. 453
        11.2.3 Periodogram .................................... 454
        11.2.4 Power .......................................... 457
        11.2.5 Power spectrum ................................. 461
   11.3 Spectral analysis using maximum entropy ............... 464
        11.3.1 Burg method .................................... 465
        11.3.2 Kapur-Kesavan method ........................... 473
        11.3.3 Maximization of entropy ........................ 473
        11.3.4 Determination of Lagrange multipliers kk ....... 476
        11.3.5 Spectral density ............................... 479
        11.3.6 Extrapolation of autocovariance functions ...... 482
        11.3.7 Entropy of power spectrum ...................... 482
   11.4 Spectral estimation using configurational entropy ..... 483
   11.5 Spectral estimation by mutual information principle ... 486
   References ................................................. 490
   Additional Reading ......................................... 490
12 Minimum Cross Entropy Spectral Analysis .................... 492
   12.1 Cross-entropy ......................................... 492
   12.2 Minimum cross-entropy spectral analysis (MCESA) ....... 493
        12.2.1 Power spectrum probability density function .... 493
   12.1 Minimum cross-entropy-based probability density
        functions given total expected spectral powers at
        each frequency ........................................ 498
        12.2.3 Spectral probability density functions for
               white noise .................................... 501
   12.3 Minimum cross-entropy power spectrum given
        auto-correlation ...................................... 503
        12.3.1 No prior power spectrum estimate is given ...... 504
        12.3.2 A prior power spectrum estimate is given ....... 505
        12.3.3 Given spectral powers: Tk = Gj Gj = Pk ......... 506
   12.4 Cross-entropy between input and output of linear
        filter ................................................ 509
        12.4.1 Given input signal PDF ......................... 509
        12.4.2 Given prior power spectrum ..................... 510
   12.5 Comparison ............................................ 512
   12.6 Towards efficient algorithms .......................... 514
   12.7 General method for minimum cross-entropy spectral
        estimation ............................................ 515
   References ................................................. 515
   Additional References ...................................... 516
13 Evaluation and Design of Sampling and Measurement
   Networks ................................................... 517
   13.1 Design considerations ................................. 517
   13.2 Information-related approaches ........................ 518
        13.2.1 Information variance ........................... 518
        13.2.2 Transfer function variance ..................... 520
        13.2.3 Correlation .................................... 521
   13.3 Entropy measures ...................................... 521
        13.3.1 Marginal entropy, joint entropy, conditional
               entropy and transinformation ................... 521
        13.3.2 Informational correlation coefficient .......... 523
        13.3.3 Isoinformation ................................. 524
        13.3.4 Information transfer function .................. 524
        13.3.5 Information distance ........................... 525
        13.3.6 Information area ............................... 525
        13.3.7 Application to rainfall networks ............... 525
   13.4 Directional information transfer index ................ 530
        13.4.1 Kernel estimation .............................. 531
        13.4.2 Application to groundwater quality networks .... 533
   13.5 Total correlation ..................................... 537
   13.6 Maximum information minimum redundancy (MIMR) ......... 539
        13.6.1 Optimization ................................... 541
        13.6.2 Selection procedure ............................ 542
   Questions .................................................. 553
   References ................................................. 554
   Additional Reading ......................................... 556
14 Selection of Variables and Models .......................... 559
   14.1 Methods for selection ................................. 559
   14.2 Kullback-Leibler (KL) distance ........................ 560
   14.3 Variable selection .................................... 560
   14.4 Transitivity .......................................... 561
   14.5 Logit model ........................................... 561
   14.6 Risk and vulnerability assessment ..................... 574
        14.6.1 Hazard assessment .............................. 576
        14.6.2 Vulnerability assessment ....................... 577
        14.6.3 Risk assessment and ranking .................... 578
   Questions .................................................. 578
   References ................................................. 579
   Additional Reading ......................................... 580
15 Neural Networks ............................................ 581
   15.1 Single neuron ......................................... 581
   15.2 Neural network training ............................... 585
   15.3 Principle of maximum information preservation ......... 588
   15.4 A single neuron corrupted by processing noise ......... 589
   15.5 A single neuron corrupted by additive input noise ..... 592
   15.6 Redundancy and diversity .............................. 596
   15.7 Decision trees and entropy nets ....................... 598
   Questions .................................................. 602
   References ................................................. 603
16 System Complexity .......................................... 605
   16.1 Ferdinand's measure of complexity ..................... 605
        16.1.1 Specification of constraints ................... 606
        16.1.2 Maximization of entropy ........................ 606
        16.1.3 Determination of Lagrange multipliers .......... 606
        16.1.4 Partition function ............................. 607
        16.1.5 Analysis of complexity ......................... 610
        16.1.6 Maximum entropy ................................ 614
        16.1.7 Complexity as a function of N .................. 616
   16.2 Kapur's complexity analysis ........................... 618
   16.3 Cornacchio's generalized complexity measures .......... 620
        16.3.1 Special case: R = 1 ............................ 624
        16.3.2 Analysis of complexity: non-unique
               K-transition points and conditional
               complexity ..................................... 624
   16.4 Kapur's simplification ................................ 627
   16.5 Kapur's measure ....................................... 627
   16.6 Hypothesis testing .................................... 628
   16.7 Other complexity measures ............................. 628
   Questions .................................................. 631
   References ................................................. 631

Additional References ......................................... 632
Author Index .................................................. 633
Subject Index ................................................. 639


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:06 2019. Размер: 29,343 bytes.
Посещение N 1259 c 13.08.2013