Sikora-Wohlfeld W. Computational tools supporting the interpretation of protein interaction data and functional genomics screens: Diss. (Dresden, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSikora-Wohlfeld W. Computational tools supporting the interpretation of protein interaction data and functional genomics screens: Diss. … Dr. rer. nat. - Dresden: Techn. Univ., 2012. - x, 172 p.: ill. - Ref.: p.155-172.
 

Оглавление / Contents
 
1  Introduction ................................................. 1
   1.1  Integrative biology ..................................... 1
   1.2  Embryonic stem cells .................................... 2
   1.3  Large-scale and integrative studies in ES cells
        research ................................................ 7
        1.3.1  RNAi screening in ES cells ....................... 7
        1.3.2  TF binding profiling in ES cells ................. 8
        1.3.3  Integrative analysis of ES cells related
               datasets ........................................ 10
2  Aims of the study ........................................... 13
3  Identification of protein complexes maintaining self-
   renewal of ES cells ......................................... 15
   3.1  Introduction ........................................... 15
        3.1.1  RNA interference ................................ 15
        3.1.2  RNAi in molecular biology ....................... 17
        3.1.3  RNA screening ................................... 17
        3.1.4  Integrative analysis of RNAi screens ............ 20
   3.2  Results ................................................ 21
        3.2.1  Normalization of genome-wide RNAi screens ....... 22
        3.2.2  Low overlap between genome-wide RNAi screens .... 26
        3.2.3  Combined analysis of genome-wide RNAi screens
               allows better coverage of known protein
               complexes ....................................... 27
        3.2.4  Extensive overlap between subsets of CORUM
               complexes ....................................... 28
        3.2.5  Enrichment tests accounting for the overlap
               between complexes ............................... 28
        3.2.6  Overlap-adjusted enrichment tests reduce
               redundancy among top findings ................... 32
        3.2.7  Complex enrichment analysis enhances
               consistency between screens ..................... 34
        3.2.8  Complex enrichment analysis enhances the
               recovery of known pluripotency related genes .... 35
        3.2.9  Complex enrichment analysis enhances the
               recovery of genes downregulated upon
               differentiation ................................. 36
        3.2.10 Complex enrichment analysis enhances the
               recovery of genes upregulated upon
               reprogramming ................................... 37
        3.2.11 Statistical significance of the complex
               enrichment analysis ............................. 39
        3.2.12 Prioritization of complexes for follow-up
               analysis ........................................ 42
        3.2.13 Selected complexes identified by complex
               enrichment analysis ............................. 43
        3.2.14 Identification and analysis of protein
               subcomplexes .................................... 59
   3.3  Discussion ............................................. 60
        3.3.1  Achievements .................................... 60
        3.3.2  Consistency between genome-wide RNAi screens .... 61
        3.3.3  Complex enrichment analysis ..................... 63
        3.3.4  Protein complexes maintaining ES cells self-
               renewal and pluripotency ........................ 65
        3.3.5  Limitations of current approach and future
               work ............................................ 67
   3.4  Methods ................................................ 68
        3.4.1  Preprocessing and normalization of genome-
               wide RNAi screens ............................... 68
        3.4.2  Preprocessing of other RNAi screen used for
               validation ...................................... 70
        3.4.3  Preprocessing of expression data used for
               validation ...................................... 70
        3.4.4  Protein complexes ............................... 71
        3.4.5  Correlation between CORUM complexes ............. 73
        3.4.6  Complex enrichment analysis ..................... 73
        3.4.7  Multiple testing correction ..................... 76
        3.4.8  Evaluation tests for enrichment methods ......... 78
   3.5  Contributions .......................................... 79
4  Transcription factor target gene identification based on
   ChlP-seq data ............................................... 81
   4.1  Introduction ........................................... 81
        4.1.1  ChlP-seq experiment ............................. 81
        4.1.2  Inferring TF targets from ChIP-seq data ......... 83
   4.2  Results ................................................ 84
        4.2.1  TF target prediction methods .................... 84
        4.2.2  Evaluation of TF-target prediction methods ...... 88
        4.2.3  Ranking of differentially expressed genes is
               biased by non-changing genes .................... 93
        4.2.4  Inclusion of additional genomic data ............ 95
        4.2.5  ClosestGene minimizes bias in gene-rich
               regions ......................................... 97
        4.2.6  Q-values better allow comparison between
               ChIP-seq experiments than p-values .............. 98
        4.2.7  Comparing TF target profiles .................... 99
        4.2.8  Delayed response of strong TF targets to TF
               perturbation ................................... 101
        4.2.9  Regulatory program of gene clusters ............ 103
   4.3  Discussion ............................................ 106
        4.3.1  Achievements ................................... 106
        4.3.2  Peak-to-gene assignment is crucial for
               successful target gene identification .......... 106
        4.3.3  Common shortcomings of ChIP-seq-based
               scorings ....................................... 107
        4.3.4  Unregulated genes may bias correlation
               between expression and ChIP-seq data ........... 108
        4.3.5  Inclusion of additional genomic data ........... 109
        4.3.6  Delayed response of strong targets ............. 109
        4.3.7  Chromosomal clustering of target genes ......... 110
        4.3.8  Future work .................................... 111
   4.4  Methods ............................................... 112
        4.4.1  ChlP-seq data .................................. 112
        4.4.2  Expression datasets used for validation ........ 112
        4.4.3  Gene positions ................................. 113
        4.4.4  Window-based methods for distance-based TF-
               target prediction .............................. 114
        4.4.5  Distribution-based methods for distance-based
               TF target assignment ........................... 114
        4.4.6  Evaluation of the TF-target prediction
               methods ........................................ 115
        4.4.7  Incorporation of additional information ........ 116
        4.4.8  Q-value calculation ............................ 116
        4.4.9  Time of response of TF targets upon TF
               depletion ...................................... 117
        4.4.10 Clustering of TFs based on binding sites and
               target genes ................................... 117
        4.4.11 R package ...................................... 117
   4.5  Contributions ......................................... 118
5  Exploring network-based analysis of functional screens ..... 119
   5.1  Network-based analysis of functional screens .......... 119
   5.2  Application of the eQED algorithm to the analysis of
        RNAi screens .......................................... 120
6  Outlook .................................................... 129

List of Figures ............................................... 131
List of Tables ................................................ 133
Abbreviations ................................................. 135
Appendices .................................................... 137
   A Manually added complexes ................................. 137
   В impFisher and impGSEA pseudocode ......................... 139
   С Complexes identified in mouse screens .................... 141
   D Complexes identified in human screen ..................... 145
   E Transcription factors and data included in the study ..... 149
References .................................................... 155


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:06 2019. Размер: 12,387 bytes.
Посещение N 1254 c 13.08.2013