Random matrices, random processes and integrable systems (New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRandom matrices, random processes and integrable systems / ed. by J.Harnad. - New York: Springer, 2011. - xviii, 524 p. - (CRM series in mathematical physics). - Incl. bibl. ref. - Ind.: p.509-524. - ISBN 978-1-419-9513-1
 

Место хранения: 016 | Библиотека Института ядерной физики СО РАН | Новосибирск

Оглавление / Contents
 
Preface
John Hamad ...................................................... V
References ..................................................... IX

Part I Random Matrices, Random Processes and Integrable Models

1  Random and Integrable Models in Mathematics and Physics
   Pierre van Moerbeke .......................................... 3
   1.1  Permutations, Words, Generalized Permutations and
        Percolation ............................................. 4
        1.1.1  Longest Increasing Subsequences in
               Permutations, Words and Generalized
               Permutations ..................................... 4
        1.1.2  Young Diagrams and Schur Polynomials ............. 6
        1.1.3  Robinson-Schensted-Knuth Correspondence for
               Generalized Permutations ......................... 9
        1.1.4  The Cauchy Identity ............................. 11
        1.1.5  Uniform Probability on Permutations,
               Plancherel Measure and Random Walks ............. 13
        1.1.6  Probability Measure on Words .................... 22
        1.1.7  Generalized Permutations, Percolation and
               Growth Models ................................... 24
   1.2  Probability on Partitions, Toeplitz and Fredholm
        Determinants ........................................... 33
        1.2.1  Probability on Partitions Expressed as
               Toeplitz Determinants ........................... 35
        1.2.2  The Calculus of Infinite Wedge Spaces ........... 39
        1.2.3  Probability on Partitions Expressed as
               Fredholm Determinants ........................... 44
        1.2.4  Probability on Partitions Expressed as U(n)
               Integrals ....................................... 48
   1.3  Examples ............................................... 50
        1.3.1  Plancherel Measure and Gessel's Theorem ......... 50
        1.3.2  Probability on Random Words ..................... 54
        1.3.3  Percolation ..................................... 56
   1.4  Limit Theorems ......................................... 60
        1.4.1  Limit for Plancherel Measure .................... 60
        1.4.2  Limit Theorem for Longest Increasing Sequences .. 64
        1.4.3  Limit Theorem for the Geometrically
               Distributed Percolation Model, when One Side
               of the Matrix Tends to ∞ ........................ 67
        1.4.4  Limit Theorem for the Geometrically Distributed
               Percolation Model, when Both Sides of the
               Matrix Tend to ∞ ................................ 71
        1.4.5  Limit Theorem for the Exponentially Distributed
               Percolation Model, when Both Sides of the
               Matrix tend to ∞ ................................ 75
   1.5  Orthogonal Polynomials for a Time-Dependent Weight
        and the KP Equation .................................... 76
        1.5.1  Orthogonal Polynomials .......................... 76
        1.5.2  Time-Dependent Orthogonal Polynomials and the
               KP Equation ..................................... 81
   1.6  Virasoro Constraints ................................... 88
        1.6.1  Virasoro Constraints for β-Integrals ........... 88
        1.6.2  Examples ........................................ 93
   1.7  Random Matrices ........................................ 96
        1.7.1  Haar Measure on the Space fig.2n of Hermitian
               Matrices ........................................ 96
        1.7.2  Random Hermitian Ensemble ....................... 99
        1.7.3  Reproducing Kernels ............................ 102
        1.7.4  Correlations and Fredholm Determinants ......... 104
   1.8  The Distribution of Hermitian Matrix Ensembles ........ 108
        1.8.1  Classical Hermitian Matrix Ensembles ........... 108
        1.8.2  The Probability for the Classical Hermitian
               Random Ensembles and PDEs Generalizing
               Painleve ....................................... 113
        1.8.3  Chazy and Painleve Equations ................... 119
   1.9  Large Hermitian Matrix Ensembles ...................... 120
        1.9.1  Equilibrium Measure for GUE and Wigner's
               Semi-Circle .................................... 120
        1.9.2  Soft Edge Scaling Limit for GUE and the
               Tracy-Widom Distribution ....................... 122
        References ............................................ 128

2  Integrable Systems, Random Matrices, and Random Processes
   Mark Adler ................................................. 131
   2.1  Matrix Integrals and Solitons ......................... 134
        2.1.1  Random Matrix Ensembles ........................ 134
        2.1.2  Large H-limits ................................. 137
        2.1.3  KP Hierarchy ................................... 139
        2.1.4  Vertex Operators, Soliton Formulas and
               Fredholm Determinants .......................... 141
        2.1.5  Virasoro Relations Satisfied by the Fredholm
               Determinant .................................... 144
        2.1.6  Differential Equations for the Probability in
               Scaling Limits ................................. 146
   2.2  Recursion Relations for Unitary Integrals ............. 151
        2.2.1  Results Concerning Unitary Integrals ........... 151
        2.2.2  Examples from Combinatorics .................... 154
        2.2.3  Bi-orthogonal Polynomials on the Circle and
               the Toeplitz Lattice ........................... 157
        2.2.4  Virasoro Constraints and Difference Relations .. 159
        2.2.5  Singularity Confinement of Recursion
               Relations ...................................... 163
   2.3  Coupled Random Matrices and the 2-Toda Lattice ........ 167
        2.3.1  Main Results for Coupled Random Matrices ....... 167
        2.3.2  Link with the 2-Toda Hierarchy ................. 168
        2.3.3  L-U Decomposition of the Moment Matrix,
               Bi-orthogonal Polynomials and 2-Toda Wave
               Operators ...................................... 171
        2.3.4  Bilinear Identities and τ-function PDEs ........ 174
        2.3.5  Virasoro Constraints for the τ-functions ....... 176
        2.3.6  Consequences of the Virasoro Relations ......... 179
        2.3.7  Final Equations ................................ 181
   2.4  Dyson Brownian Motion and the Airy Process ............ 182
        2.4.1  Processes ...................................... 182
        2.4.2  PDEs and Asymptotics for the Processes ......... 189
        2.4.3  Proof of the Results ........................... 192
   2.5  The Pearcey Distribution .............................. 199
        2.5.1  GUE with an External Source and Brownian
               Motion ......................................... 199
        2.5.2  MOPS and a Riemann-Hilbert Problem ............. 202
        2.5.3  Results Concerning Universal Behavior .......... 204
        2.5.4  3-KP Deformation of the Random Matrix
               Problem ........................................ 208
        2.5.5  Virasoro Constraints for the Integrable
               Deformations ................................... 213
        2.5.6  A PDE for the Gaussian Ensemble with External
               Source and the Pearcey PDE ..................... 218
        A Hirota Symbol Residue Identity ...................... 221
   References ................................................. 223

Part II Random Matrices and Applications

3  Integral Operators in Random Matrix Theory
   Harold Widom ............................................... 229
   3.1  Hilbert-Schmidt and Trace Class Operators. Trace and
        Determinant. Fredholm Determinants of Integral
        Operators ............................................. 229
   3.2  Correlation Functions and Kernels of Integral
        Operators. Spacing Distributions as Operator
        Determinants. The Sine and Airy Kernels ............... 238
   3.3  Differential Equations for Distribution Functions
        Arising in Random Matrix Theory. Representations in
        Terms of Painlevé Functions ........................... 243
   References ................................................. 249
4  Lectures on Random Matrix Models
   Pavel M. Bleher ............................................ 251
   4.1  Random Matrix Models and Orthogonal Polynomials ....... 252
        4.1.1  Unitary Ensembles of Random Matrices ........... 252
        4.1.2  The Riemann-Hilbert Problem for Orthogonal
               Polynomials .................................... 260
        4.1.3  Distribution of Eigenvalues and Equilibrium
               Measure ........................................ 263
   4.2  Large N Asymptotics of Orthogonal Polynomials.
        The Riemann-Hilbert Approach .......................... 267
        4.2.1  Heine's Formula for Orthogonal Polynomials ..... 267
        4.2.2  First Transformation of the RH Problem ......... 269
        4.2.3  Second Transformation of the RHP: Opening of
               Lenses ......................................... 271
        4.2.4  Model RHP ...................................... 272
        4.2.5  Construction of a Parametrix at Edge Points .... 280
        4.2.6  Third and Final Transformation of the RHP ...... 286
        4.2.7  Solution of the RHP for RN(z) .................. 287
        4.2.8  Asymptotics of the Recurrent Coefficients ...... 288
        4.2.9  Universality in the Random Matrix Model ........ 291
   4.3  Double Scaling Limit in a Random Matrix Model ......... 294
        4.3.1  Ansatz of the Double Scaling Limit ............. 294
        4.3.2  Construction of the Parametrix in ΩWKB ......... 297
        4.3.3  Construction of the Parametrix near the
               Turning Points ................................. 299
        4.3.4  Construction of the Parametrix near the
               Critical Point ................................. 300
   4.4  Large N Asymptotics of the Partition Function of
        Random
        Matrix Models ......................................... 308
        4.4.1  Partition Function ............................. 308
        4.4.2  Analyticity of the Free Energy for Regular V ... 310
        4.4.3  Topological Expansion .......................... 311
        4.4.4  One-Sided Analyticity at a Critical Point ...... 313
        4.4.5  Double Scaling Limit of the Free Energy ........ 315
   4.5  Random Matrix Model with External Source .............. 315
        4.5.1  Random Matrix Model with External Source and
               Multiple Orthogonal Polynomials ................ 315
        4.5.2  Gaussian Matrix Model with External Source
               and Non-Intersecting Brownian Bridges .......... 321
        4.5.3  Gaus an Model with External Source. Main
               Results ........................................ 322
        4.5.4  Construction of a Parametrix in the Case
               α > 1 .......................................... 326
        4.5.5  Construction of a Parametrix in the Case
               α < 1 .......................................... 333
        4.5.6  Double Scaling Limit at a = 1 .................. 340
        4.5.7  Concluding Remarks ............................. 346
        References  ........................................... 347

5  Large N Asymptotics in Random Matrices
   Alexander R. Its ........................................... 351
   5.1  The RH Representation of the Orthogonal Polynomials
        and Matrix Models ..................................... 351
        5.1.1  Introduction ................................... 351
        5.1.2  The RH Representation of the Orthogonal
               Polynomials .................................... 355
        5.1.3  Elements of the RH Theory ...................... 360
   5.2  The Asymptotic Analysis of the RH Problem. The
        DKMVZ Method .......................................... 373
        5.2.1  A Naive Approach ............................... 373
        5.2.2  The g-Function ................................. 373
        5.2.3  Construction of the g-Function ................. 378
   5.3  The Parametrix at the End Points. The Conclusion of
        the Asymptotic Analysis ............................... 383
        5.3.1  The Model Problem Near z = z0 .................. 383
        5.3.2  Solution of the Model Problem .................. 386
        5.3.3  The Final Formula for the Parametrix ........... 390
        5.3.4  The Conclusion of the Asymptotic Analysis ...... 391
   5.4  The Critical Case. The Double Scaling Limit and the
        Second Painleve Equation .............................. 394
        5.4.1  The Parametrix at z = 0 ........................ 394
        5.4.2  The Conclusion of the Asymptotic Analysis
               in the Critical Case ........................... 399
        5.4.3  Analysis of the RH Problem (1C)-(3C). The
               Second Painleve Equation ....................... 403
        5.4.4  The Painleve Asymptotics of the Recurrence
               Coefficients ................................... 406
   References ................................................. 412

6  Formal Matrix Integrals and Combinatorics of Maps
   B. Eynard .................................................. 415
   6.1  Introduction .......................................... 415
   6.2  Formal Matrix Integrals ............................... 417
        6.2.1  Combinatorics of Maps .......................... 419
        6.2.2  Topological Expansion .......................... 423
   6.3  Loop Equations ........................................ 423
   6.4  Examples .............................................. 429
        6.4.1  1-Matrix Model ................................. 429
        6.4.2  2-Matrix Model ................................. 431
        6.4.3  Chain of Matrices .............................. 434
        6.4.4  Closed Chain of Matrices ....................... 435
        6.4.5  O(n) Model ..................................... 435
        6.4.6  Potts Model .................................... 437
        6.4.7  3-Color Model .................................. 438
        6.4.8  6-Vertex Model ................................. 438
        6.4.9  ADE Models ..................................... 438
        6.4.10 ABAB Models .................................... 439
   6.5  Discussion ............................................ 439
        6.5.1  Summary of Some Known Results .................. 439
        6.5.2  Some Open Problems ............................. 440
   References ................................................. 441

7  Application of Random Matrix Theory to Multivariate
   Statistics
   Momar Dieng and Craig A. Tracy ............................. 443
   7.1  Multivariate Statistics ............................... 443
        7.1.1  Wishart Distribution ........................... 443
        7.1.2  An Example with ∑ ≠ cIp ........................ 446
   7.2  Edge Distribution Functions ........................... 448
        7.2.1  Summary of Fredholm Determinant
               Representations ................................ 448
        7.2.2  Universality Theorems .......................... 449
   7.3  Painleve Representations: A Summary ................... 451
   7.4  Preliminaries ......................................... 454
        7.4.1  Determinant Matters ............................ 454
        7.4.2  Recursion Formula for the Eigenvalue
               Distributions .................................. 455
   7.5  The Distribution of the mth Largest Eigenvalue in
        the GUE ............................................... 458
        7.5.1  The Distribution Function as a Fredholm
               Determinant .................................... 458
        7.5.2  Edge Scaling and Differential Equations ........ 459
   7.6  The Distribution of the mth Largest Eigenvalue in
        the GSE ............................................... 463
        7.6.1  The Distribution Function as a Fredholm
               Determinant .................................... 463
        7.6.2  Gaussian Specialization ........................ 468
        7.6.3  Edge Scaling ................................... 474
   7.7  The Distribution of the mth Largest Eigenvalue in
        the GOE ............................................... 481
        7.7.1  The Distribution Function as a Fredholm
               Determinant .................................... 481
        7.7.2  Gaussian Specialization ........................ 486
        7.7.3  Edge Scaling ................................... 490
   7.8  An Interlacing Property ............................... 499
   7.9  Numerics .............................................. 503
        7.9.1  Partial Derivatives of q(x, λ) ................. 503
        7.9.2  Algorithms ..................................... 503
        7.9.3  Tables ......................................... 504
   References ................................................. 505

Index ......................................................... 509


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:06 2019. Размер: 21,459 bytes.
Посещение N 1586 c 13.08.2013