PREFACE ...................................................... xiii
FOREWORD ..................................................... xvii
CONTRIBUTORS .................................................. xix
1 An Overview of Polymer-Immobilized Chiral Catalysts and
Synthetic Chiral Polymers .................................... 1
Shinichi Itsuno
1.1 Introduction ............................................ 1
1.2 Polymeric Chiral Catalyst ............................... 2
1.2.1 Polymers Having a Chiral Pendant Group ........... 4
1.2.2 Main-chain Chiral Polymers ....................... 4
1.2.3 Dendrimer-supported Chiral Catalysts ............. 6
1.2.4 Helical Polymers ................................. 6
1.2.5 Multicomponent Asymmetric Catalysts .............. 7
1.2.6 Continuous Row System ............................ 8
1.3 Synthesis of Optically Active Polymers .................. 8
1.3.1 Asymmetric Reaction on Polymer ................... 9
1.3.2 Helical Polymers and Hyperbranched Polymers ...... 9
1.3.3 Heteroatom Chiral Polymers ...................... 10
1.3.4 Asymmetric Polymerization ....................... 11
References .................................................. 11
1.3.1 10 9876543 ...................................... 21
2 Polymer-Immobilized Chiral Organocatalyst ................... 17
Naoki Haraguchi and Shinichi Itsuno
2.1 Introduction ........................................... 17
2.2 Synthesis of Polymer-immobilized Chiral
Organocatalyst ......................................... 18
2.3 Polymer-immobilized Cinchona Alkaloids ................. 22
2.4 Other Polymer-immobilized Chiral Basic
Organocatalysts ........................................ 27
2.5 Polymer-immobilized Cinchona Alkaloid Quaternary
Ammonium Salts ......................................... 28
2.6 Polymer-immobilized MacMillan Catalysts ................ 35
2.7 Polymer-immobilized Pyrrolidine Derivatives ............ 42
2.8 Other Polymer-immobilized Chiral Quaternary Ammonium
Salts .................................................. 46
2.9 Polymer-immobilized Proline Derivatives ................ 46
2.10 Polymer-immobilized Peptides and Poly(amino acid)s ..... 50
2.11 Polymer-immobilized Chiral Acidic Organocatalysts ...... 50
2.12 Helical Polymers as Chiral Organocatalysts ............. 51
2.13 Cascade Reactions Using Polymer-immobilized Chiral
Organocatalysts ........................................ 52
2.14 Conclusions ............................................ 54
References .................................................. 56
3 Asymmetric Synthesis Using Polymer-Immobilized Proline
Derivatives ................................................. 63
Michelangelo Gruttadauria, Francesco Giacalone, and Renato
Noto
3.1 Introduction ........................................... 63
3.2 Polymer-supported Proline .............................. 66
3.3 Polymer-supported Prolinamides ......................... 73
3.4 Polymer-supported Proline-Peptides ..................... 75
3.5 Polymer-supported Pyrrolidines ......................... 78
3.6 Polymer-supported Prolinol and Diarylprolinol
Derivatives ............................................ 80
3.7 Conclusions and Outlooks ............................... 84
References .................................................. 85
4 Peptide-Catalyzed Asymmetric Synthesis ...................... 91
Kazuaki Kudo and Kengo Akagawa
4.1 Introduction ........................................... 91
4.2 Poly(amino acid) Catalysts ............................. 94
4.3 Tri- and Tetrapeptide Catalysts ........................ 99
4.4 Longer Peptides with a Secondary Structure ............ 110
4.5 Others ................................................ 118
4.6 Conclusions and Outlooks .............................. 119
References ................................................. 120
5 Continuous Flow System using Polymer-Supported Chiral
Catalysts .................................................. 125
Santiago V. Luis and Eduardo García-Verdugo
5.1 Introduction .......................................... 125
5.2 Asymmetric Polymer-supported, Metal-based Catalysts
and Reagents .......................................... 132
5.2.1 Enantioselective Additions to C=0 Groups ....... 132
5.2.2 Diels-Alder and Related Cycloaddition
Reactions ...................................... 136
5.2.3 Enantioslective Cyclopropanation Reactions ..... 139
5.2.4 Reduction Reactions ............................ 142
5.2.5 Oxidation Reactions ............................ 143
5.3 Polymer-supported Asymmetric Organocatalysts .......... 147
5.4 Polymer-supported Biocatalysts ........................ 151
5.5 Conclusions ........................................... 152
References ................................................. 153
6 Chiral Synthesis on Polymer Support: A Combinatorial
Approach ................................................... 157
Deepak B. Salunke and Chung-Ming Sun
6.1 Introduction .......................................... 157
6.2 Chiral Synthesis of Complex Polyfunctional Molecules
on Polymer Support .................................... 160
6.2.1 Spirocyclic Compound Libraries ................. 160
6.2.2 Macrocyclic Compound Libraries ................. 165
6.2.3 Heterocyclic Compound Libraries ................ 168
6.2.4 Natural-product-inspired Compound Libraries .... 176
6.2.5 Libraries Through Combinatorial Decoration of
Natural Products ............................... 184
6.2.6 Divergent Synthesis of Small Molecular
Libraries ...................................... 188
6.2.7 Chiral Molecules Through Sequential Use of
Polymer-supported Reagents ..................... 192
6.3 Conclusions ........................................... 194
References ................................................. 195
7 Synthesis and Application of Helical Polymers with
Macromolecular Helicity Memory ............................. 201
Hiroki Iida and Eiji Yashima
7.1 Introduction .......................................... 201
7.2 Macromolecular Helicity Memory ........................ 203
7.2.1 Macromolecular Helicity Memory in Solution ..... 203
7.2.2 Macromolecular Helicity Memory in a Gel and
a Solid ........................................ 213
7.3 Enantioselective Reaction Assisted by Helical
Polymers with Helicity Memory ......................... 218
7.4 Conclusions ........................................... 219
References ................................................. 219
8 Poly(isocyanide)s, Poly(quinoxaline-2,3-diyl)s, and
Related Helical Polymers Used as Chiral Polymer Catalysts
in Asymmetric Synthesis .................................... 223
Yuuya Nagata and Michinori Suginome
8.1 Introduction .......................................... 223
8.2 Asymmetric Synthesis of Poly(isocyanide)s ............. 224
8.2.1 Synthesis of Poly(isocyanide)s Bearing Chiral
Side Chains .................................... 224
8.2.2 Nonracemic Poly(isocyanide)s Without Chiral
Pendant Groups ................................. 239
8.3 Asymmetric Synthesis of Poly(quinoxaline)s ............ 244
8.3.1 Polymerization of 1,2-diisocyanobenzenes ....... 244
8.3.2 Preparation of Nonracemic Poly(quinoxaline)s ... 246
8.4 Enantioselective Catalysis using Helical Polymers ..... 255
8.4.1 Chiral Polymer Catalysts with Chiral Groups
in the Close Proximity of the Reaction Sites ... 255
8.4.2 Chiral Polymer Catalysts with No Chiral
Groups in the Proximity of the Reaction Sites .. 258
8.5 Conclusions ........................................... 262
References ................................................. 263
9 C2 Chiral Biaryl Unit-Based Helical Polymers and Their
Application to Asymmetric Catalysis ........................ 267
Takeshi Maeda and Toshikazu Takata
9.1 Introduction .......................................... 267
9.2 Synthesis of C2 Chiral Unit-based Helical Polymers .... 269
9.2 Use of C2 Chiral Biaryl Moieties as Chirally
Twisted Units in the Polymer Main Chain ............... 269
9.2.2 Synthesis of Stable Helical Polymers by the
Fixation of Main-chain Conformation ............ 277
9.3 Asymmetric Reactions Catalyzed by Helical Polymer
Catalysts ............................................. 282
9.4 Conclusions ........................................... 289
References ................................................. 290
10 Immobilization of Multicomponent Asymmetric Catalysts
(MACs) ..................................................... 293
Hiroaki Sasai and Shinobu Takizawa
10.1 Introduction .......................................... 293
10.2 Dendrimer-Supported and Dendronized Polymer-
supported MACs ........................................ 294
10.2.1 Dendrimer-supported MACs [4] ................... 294
10.2.2 Dendronized Polymer-supported MACs [11] ........ 296
10.3 Nanoparticles as Supports for Chiral Catalysts [13] ... 302
10.3.1 Micelle-derived Polymer Supports [14] .......... 302
10.3.2 Monolayer-protected Au Cluster
(Au-MPC)-supported Enantioselective Catalysts
[21] ........................................... 307
10.4 The Catalyst Analog Approach [24] ..................... 311
10.5 Metal-bridged Polymers as Heterogeneous Catalysts:
An Immobilization Method for MACs Without Using Any
Support [26] .......................................... 314
10.6 Conclusion ............................................ 318
References ................................................. 319
11 Optically Active Polymer and Dendrimer Synthesis and
Their Use in Asymmetric Synthesis .......................... 323
Qiao-Sheng Нu and Lin Pu
11.1 Introduction .......................................... 323
11.2 Synthesis and Application of BINOL/BINAP-based
Optically Active Polymers ............................. 324
11.2.1 Synthesis of BINOL-based Optically Active
Polymers ....................................... 324
11.2.2 Application of BINOL-based Optically Active
Polymers ....................................... 327
11.2.3 Synthesis and Application of a BINAP-
containing Polymer ............................. 347
11.2.4 Synthesis of an Optically Active BINOL-BINAP-
based Bifunctional Polymer and Application in
Asymmetric Alkylation and Hydrogenation ........ 351
11.3 Synthesis and Application of Optically Active
Dendrimers ............................................ 355
11.3.1 Synthesis of BINOL-based Dendrimers and
Application in Asymmetric Alkylation ........... 355
11.3.2 Synthesis of Optically Active, Ephedrine-
based Dendronized Polymers ..................... 358
11.4 Conclusions ........................................... 360
Acknowledgment ............................................. 361
References ................................................. 361
12 Asymmetric Polymerizations of /^-Substituted Maleimides .... 365
Kenjiro Onimura and Tsutomu Oishi
12.1 Introduction .......................................... 365
12.2 Chirality of 1-Mono- or 1,1-Disubstituted and 1,2-
Disubstituted Olefins ................................. 365
12.3 Asymmetric Polymerizations of Achiral iV-Substituted
Maleimides ............................................ 368
12.4 Anionic Polymerization Mechanism of RMI ............... 371
12.5 Asymmetric Polymerizations of Chiral N-Substituted
Maleimides ............................................ 372
12.6 Structure and Absolute Stereochemistry of Poly(RMI) ... 373
12.7 Asymmetric Radical Polymerizations of Л'-Substituted
Maleimides ............................................ 378
12.8 Chiral Discrimination Using Poly(RMI) ................. 378
12.8.1 1H NMR Titration ............................... 380
12.8.2 Optical Resolution Using Poly(RMI) ............. 381
12.9 Conclusions ........................................... 384
References ................................................. 385
13 Synthesis of Hyperbranched Polymer Having Binaphthol
Units via Oxidative Cross-Coupling Polymerization .......... 389
Shigeki Habaue
13.1 Introduction .......................................... 389
13.2 Oxidative Cross-coupling Reaction between 2-Naphthol
and 3-Hydroxy-2-naphthoate ............................ 391
13.3 Oxidative Cross-coupling Polymerization Affording
Linear Poly(binaphthol) ............................... 392
13.4 Oxidative Cross-coupling Polymerization Leading to a
Hyperbranched Polymer ................................. 396
13.5 Photeiuminescence Properties of Hyperbranched
Polymers .............................................. 400
13.6 Conclusions ........................................... 403
References ................................................. 404
14 Optically Active Polyketones ............................... 407
Kyoko Nozaki
14.1 Introduction .......................................... 407
14.2 Asymmetric Synthesis of Isotactic
Poly(propylene-afr-co) ................................ 409
14.3 Asymmetric Synthesis of Isotactic Syndiotactic
Poly(styrene-alt-co) .................................. 411
14.4 Asymmetric Terpolymers Consisting of Two Kinds of
Olefins and Carbon Monoxide ........................... 413
14.5 Asymmetric Polymerization of Other Olefins with CO .... 414
14.6 Chemical Transformations of Optically Active
Polyketones ........................................... 415
14.7 Conformational Studies on the Optically Active
Polyketones ........................................... 416
14.8 Conclusions ........................................... 419
References ................................................. 420
15 Synthesis and Function of Chiral π-Conjugated Polymers
from Phenylacetylenes ...................................... 423
Toshiki Aoki, Takashi Kaneko, and Masahiro Teraguchi
15.1 Introduction .......................................... 423
15.2 Helix-sense-selective Polymerization (HSSP) of
Substituted Phenylacetylenes and Function of the
Resulting One-handed Helical Poly(phenylacetylene)s ... 425
15.2.1 Synthesis of Chiral rt-Conjugated Polymers
from Phenylacetylenes by Asymmetric-induced
Polymerization (AIP) and Helix-sense-
selective Polymerization (HSSP) of Chiral and
Achiral Phenylacetylenes ....................... 425
15.2.2 (HSSP) of Three Types of Monomers RDHPA,
RDAPA, and RDIPA, Scheme 15.4a ................. 427
15.2.3 Modified HSSP .................................. 432
15.2.4 Functions of One-handed Helical
Polyphenylacetylenes Prepared by HSSP .......... 434
15.3 Chiral Desubstitution of Side Groups in Membrane
State ................................................. 439
15.3.1 Polymer Reaction in Membrane State(RIM) ........ 439
15.3.2 Reaction in One-handed Helical Polymer
Membranes: Synthesis of One-handed Helical
Polymers with no Chiral Side Groups and no
Chiral Carbons ................................. 439
15.3.3 Reaction in Polystyrene Monolith: Synthesis
of Chiral Porous Materials ..................... 444
15.4 Synthesis of Chiral Polyradicals ...................... 446
15.4.1 Molecular Design of Optically Active Helical
Polyradicals ................................... 446
15.4.2 Copolymerization of the Monomers Possessing
Radical and Chiral Moieties .................... 447
15.4.3 Synthesis of Chiral Polyradicals via HSSP of
Achiral Monomers ............................... 450
References ................................................. 454
16 P-Stereogenic Oligomers, Polymers, and Related Cyclic
Compounds .................................................. 457
Yasuhiro Morisaki and Yoshiki Chujo
16.1 Introduction .......................................... 457
16.2 P-Stereogenic Oligomers Containing Chiral "P" Atoms
in the Main Chain ..................................... 458
16.2.1 P-Stereogenic Tetraphosphines Containing Two
Chiral "P" Atoms ............................... 458
16.2.2 P-Stereogenic Hexaphosphines Containing Four
Chiral "P" Atoms ............................... 461
16.2.3 P-Stereogenic Oligomers Containing 6, 8, and
12 Chiral "P" Atoms ............................ 464
16.3 P-Stereogenic Polymers Containing Chiral "P" Atoms
in the Main Chain ..................................... 470
16.3.1 P-Stereogenic Polymers Containing Chiral "P"
Atoms in the Repeating Unit of the Main
Chain .......................................... 470
16.3.2 Optically Active Dendrimers Containing the
P-Chiral Bisphosphine Unit as the Core ......... 473
16.3.3 Helical Polymers Containing Chiral "P" Atoms
in the Terminal Unit ........................... 473
16.4 Cyclic Phosphines Using P-Stereogenic Oligomers
as Building Blocks .................................... 475
16.4.1 Stereospecific Synthesis of trans-1,4-
Diphosphacyclohexane ........................... 475
16.4.2 Synthesis of 1,4,7,10-
Tetraphosphacyclodocecane, 12-Phosphacrown-4 ... 478
16.4.3 Synthesis of 18-Diphosphacrown-6 ............... 480
16.5 Conclusions ........................................... 485
References ................................................. 485
INDEX ......................................................... 489
|