Langenberg K.-J. Ultrasonic nondestructive testing of materials: theoretical foundations (Boca Raton, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLangenberg K.-J. Ultrasonic nondestructive testing of materials: theoretical foundations / K.-J.Langenberg, R.Marklein, K.Mayer. - Boca Raton: CRC Press, 2012. - xvii, 754 p.: ill. - Ref.: p.727-736. - Ind.: p.737-754. - ISBN 978-1-4398-5588-1
 

Оглавление / Contents
 
Preface ........................................................ xv
Authors ...................................................... xvii
1  Contents ..................................................... 1
   1.1  Introduction ............................................ 1
   1.2  Contents Flow Chart ..................................... 2
2  Mathematical Foundations .................................... 13
   2.1  Scalar, Vector, and Tensor Fields ...................... 13
        2.1.1  Vector of position .............................. 13
        2.1.2  Scalar and vector fields ........................ 17
        2.1.3  Vector products ................................. 19
        2.1.4  Tensor fields ................................... 29
   2.2  Vector and Tensor Analysis ............................. 39
        2.2.1  Del-operator: Gradient dyadic, gradient,
               divergence, and curl ............................ 39
        2.2.2  Application of the del-operator to products of
               field quantities, chain rules, delta-operator ... 46
        2.2.3  Gauss' theorem, Gauss' integral theorems,
               Green's formulas ................................ 51
        2.2.4  Cylindrical and spherical coordinates ........... 53
   2.3  Time and Spatial Spectral Analysis with Fourier
        Transforms ............................................. 60
        2.3.1  Complex numbers and complex valued functions
               of a complex variable ........................... 61
        2.3.2  Time domain spectral analysis ................... 66
        2.3.3  Fourier transformation rules .................... 70
        2.3.4  Analytic signal and Hilbert transform ........... 71
        2.3.5  Spatial domain spectral analysis ................ 75
   2.4  Delta Function ......................................... 78
        2.4.1  Delta function as distribution .................. 78
        2.4.2  Delta distribution calculus ..................... 79
        2.4.3  Delta function and Fourier transform ............ 81
        2.4.4  Three-dimensional delta function ................ 83
        2.4.5  Singular function of a surface .................. 84
3  Governing Equations of Elastodynamics ....................... 87
   3.1  Newton-Cauchy Equation of Motion and Deformation Rate
        Equation in the Time and Frequency Domain .............. 87
   3.2  Physical Foundations ................................... 90
        3.2.1  Mass conservation ............................... 90
        3.2.2  Convective time derivative ...................... 92
        3.2.3  Linear momentum conservation: Newton-Cauchy
               equation of motion .............................. 94
        3.2.4  Angular momentum conservation: Stress tensor
               symmetry ........................................ 96
        3.2.5  Deformation rate equation ....................... 98
        3.2.6  Linear elastodynamics: Newton-Cauchy equation
               of motion and deformation rate equation ........ 101
   3.3  Transition and Boundary Conditions .................... 102
        3.3.1  Discontinuous material properties:
               Homogeneous and inhomogeneous transition
               conditions ..................................... 102
        3.3.2  Infinite discontinuity of material
               properties: Boundary conditions ................ 107
        3.3.3  Boundary between elastic and fluid materials:
               Homogeneous and inhomogeneous transition
               conditions ..................................... 108
        3.3.4  Boundary between two elastic materials with
               fluid coupling: Homogeneous and inhomogeneous
               transition conditions .......................... 110
4  Constitutive Equations, Governing Equations,
   Elastodynamic Energy Conservation .......................... 113
   4.1  Constitutive Equations ................................ 113
   4.2  Linear Nondissipative Materials: Cauchy-Hooke Law ..... 114
        4.2.1  Anisotropic materials, Voigt notation,
               transversely isotropic materials ............... 114
        4.2.2  Isotropic materials ............................ 118
        4.2.3  Elastodynamic governing equations .............. 119
   4.3  Elastodynamic Energy Conservation Theorem for
        Nondissipative Materials in the Time and Frequency
        Domains ............................................... 119
        4.3.1  Elastodynamic Poynting vector in the time
               domain ......................................... 119
        4.3.2  Complex valued elastodynamic Poynting vector
               in the frequency domain ........................ 122
   4.4  Linear Dissipative Materials .......................... 126
        4-4.1  Maxwell model .................................. 126
        4.4.2  Elastodynamic energy conservation law:
               Dissipation energy ............................. 129
        4.4.3  Rayleigh and Kelvin-Voigt model ................ 131
        4.4.4  Relaxation models .............................. 132
   4.5  Piezoelectricity and Magnetostriction ................. 133
        4.5.1  Piezoelectricity ............................... 133
        4.5.2  Magnetostriction ............................... 140
5  Acoustics .................................................. 143
   5.1  Governing Equations of Acoustics ...................... 143
   5.2  Transition and Boundary Conditions .................... 144
   5.3  Wave Equations in the Time and Frequency Domains ...... 146
   5.4  Solutions of the Homogeneous Acoustic Wave Equations
        in Homogeneous Materials: Plane Longitudinal
        Pressure Waves ........................................ 148
   5.5  Acoustic Source Fields in Homogeneous Materials:
        Point Source Synthesis with Green Functions ........... 150
        5.5.1  Green functions for pressure sources ........... 150
        5.5.2  Green functions for velocity sources ........... 152
        5.5.3  Justification of the distributional term
               appearing in the second rank Green tensor of
               acoustics ...................................... 155
   5.6  Huygens' Principle for Acoustic Scattered Fields
        in Homogeneous Materials .............................. 157
        5.6.1  Huygens' principle ............................. 157
        5.6.2  Acoustic fields scattered by inhomogeneities
               with soft and rigid boundaries, Kirchhoff
               approximation .................................. 159
        5.6.3  Acoustic fields scattered by penetrable
               inhomogeneities, Born approximation ............ 163
6  Electromagnetism ........................................... 169
   6.1  Maxwell Equations, Poynting Vector, Lorentz Force ..... 169
        6.1.1  Maxwell equations .............................. 169
        6.1.2  Vacuum Maxwell equations ....................... 170
        6.1.3  Poynting's theorem ............................. 171
        6.1.4  Lorentz force .................................. 172
   6.2  Transition and Boundary Conditions .................... 173
   6.3  Constitutive Equations: Permittivity and
        Permeability; Dissipation: Susceptibility Kernels
        and Conductivity ...................................... 175
        6.3.1  Permittivity and permeability .................. 175
        6.3.2  Susceptibility kernels ......................... 176
        6.3.3  Conductivity ................................... 178
   6.4  Wave Equations in the Time and Frequency Domains ...... 179
        6.4.1  Wave equations in the time domain .............. 179
        6.4.2  Wave equations in the frequency domain ......... 181
   6.5  Solutions of Homogeneous Electromagnetic Wave
        Equations in Homogeneous Isotropic Materials: Plane
        Transverse Electromagnetic Waves ...................... 182
        6.5.1  Nondissipative materials ....................... 182
        6.5.2  Dissipative materials .......................... 185
   6.6  Electromagnetic Source Fields in Homogeneous
        Isotropic Materials, Electromagnetic Tensor Green
        Functions ............................................. 186
        6.6.1  Electric scalar potential and magnetic
               vector potential ............................... 186
        6.6.2  Electric second rank Green tensor .............. 188
        6.6.3  Far-field approximation ........................ 189
        6.6.4  Hertzian dipole ................................ 190
        6.6.5  Magnetic second-rank Green tensor .............. 191
   6.7  Electromagnetic Scattered Fields; Electromagnetic
        Formulation of Huygens' Principle ..................... 192
        6.7.1  Electromagnetic formulation of Huygens'
               principle ...................................... 192
        6.7.2  Electromagnetic fields scattered by perfect
               electrical conductors: EFIE and MFIE ........... 194
        6.7.3  Kirchhoff approximation ........................ 196
        6.7.4  Electromagnetic fields scattered by
               penetrable inhomogeneities: Lippmann-
               Schwinger integral equation .................... 197
        6.7.5  Born approximation ............................. 200
        6.7.6  Scattering tensor .............................. 201
   6.8  Two-Dimensional Electromagnetism: TM- and TE-
        Decoupling ............................................ 201
        6.8.1  TM-field ....................................... 202
        6.8.2  TE-field ....................................... 204
7  Vector Wave Equations ...................................... 205
   7.1  Wave Equations for Anisotropic and Isotropic
        Nondissipative Materials .............................. 205
        7.1.1  Inhomogeneous anisotropic materials ............ 205
        7.1.2  Homogeneous anisotropic materials .............. 209
        7.1.3  Homogeneous isotropic materials ................ 210
        7.1.4  Inhomogeneous isotropic materials .............. 211
   7.2  Helmholtz Decomposition for Homogeneous Isotropic
        Materials: Pressure and Shear Waves ................... 211
   7.3  Decoupling of Scalar SH-Waves for Inhomogeneous
        Isotropic Two-Dimensional Materials ................... 214
   7.4  Frequency Domain Wave Equations for Nondissipative
        and Dissipative Materials ............................. 216
        7.4.1  Frequency domain wave equations for
               nondissipative materials ....................... 917
        7.4.2  Frequency domain wave equations for
               dissipative materials .......................... 21
8  Elastic Plane Waves in Homogeneous Materials ............... 219
   8.1  Homogeneous Plane Waves in Isotropic Nondissipative
        Materials ............................................. 219
        8.1.1  One-dimensional plane waves: Primary
               longitudinal and secondary transverse waves .... 219
        8.1.2  Three-dimensional plane waves: Primary
               longitudinal pressure and secondary
               transverse shear waves ......................... 232
   8.2  Inhomogeneous Plane Waves in Isotropic
        Nondissipative Materials .............................. 249
   8.3  Plane Waves in Anisotropic Nondissipative Materials ... 257
        8.3.1  Plane waves in anisotropic materials ........... 257
        8.3.2  Plane waves in transversely isotropic
               materials ...................................... 265
   8.4  Plane Waves in Isotropic Dissipative Materials ........ 282
        8.4.1  Homogeneous plane waves ........................ 283
        8.4.2  Inhomogeneous plane waves ...................... 287
9  Reflection, Transmission, and Mode Conversion of Elastic
   Plane Waves at Planar Boundaries between Homogeneous
   Nondissipative Materials ................................... 291
   9.1  Stress-Free Planar Boundary of a Homogeneous
        Isotropic Nondissipative Elastic Half-Space ........... 291
        9.1.1  Primary longitudinal pressure wave incidence ... 291
        9.1.2  Secondary transverse vertical shear wave
               incidence ...................................... 304
        9.1.3  Secondary transverse horizontal shear wave
               incidence ...................................... 323
   9.2  Planar Boundary between Homogeneous Isotropic
        Nondissipative Elastic Half-Spaces .................... 326
        9.2.1  SH-wave incidence .............................. 326
        9.2.2  P- and SV-waves incidence ...................... 338
   9.3  Planar Boundary between a Homogeneous Isotropic
        Nondissipative and a Homogeneous Transversely
        Isotropic Nondissipative Half-Space ................... 349
        9.3.1  Inhomogeneous elastic plane waves in
               isotropic materials ............................ 351
        9.3.2  Inhomogeneous plane SH-waves in transversely
               isotropic materials ............................ 353
        9.3.3  Reflection and transmission of plane
               SH-Waves at the planar boundary between
               homogeneous isotropic and homogeneous
               transversely isotropic nondissipative
               materials ...................................... 357
        9.3.4  Reflection, transmission, and mode
               conversion of plane SV-waves at the planar
               boundary between homogeneous isotropic and
               homogeneous transversely isotropic
               nondissipative materials ....................... 369
10 Rayleigh Surface Waves ..................................... 377
   10.1 Planar Surfaces ....................................... 377
   10.2 Lightly Curved Surfaces ............................... 381
11 Plane Wave Spatial Spectrum ................................ 385
   11.1 Acoustic Plane Wave Spatial Spectrum  ................. 385
        11.1.1 Plane wave spatial spectrum .................... 385
        11.1.2 Propagator as spatial filter ................... 388
        11.1.3 Approximate evaluation with the stationary
               phase method ................................... 391
   11.2 Elastic Plane Wave Spatial Spectrum ................... 394
12 Ultrasonic Beams and Wave Packets .......................... 397
   12.1 Gaussian Beams as PaJaxial Approximation of
        a Spatial Plane Wave Spectrum ......................... 397
   12.2 Pulsed Beams as Exact Solutions of an Approximate
        Wave Equation ......................................... 404
   12.3 Pulsed Beams as Approximate Solutions of Eikonal
        and Transport Equations ............................... 411
        12.3.1 Eikonal and transport equations for acoustic
               beams .......................................... 411
        12.3.2 Eikonal and transport equations for elastic
               beams .......................................... 414
13 Point Sources in Homogeneous Isotropic Infinite Space,
   Elastodynamic Source Fields ................................ 423
   13.1 Homogeneous Infinite Space Scalar Green Function ...... 423
        13.1.1 Time harmonic Green function ................... 423
        13.1.2 Time domain Green function ..................... 430
        13.1.3 Far-field approximation ........................ 435
        13.1.4 Point source synthesis of scalar source
               fields with the scalar Green function .......... 438
   13.2 Homogeneous Isotropic Infinite Space Green Tensors
        of Elastodynamics ..................................... 442
        13.2.1 Second-rank Green tensor ....................... 442
        13.2.2 Particle displacement of a point source force
               density, point radiation characteristic ........ 44
        13.2.3 Third-rank Green tensor ........................ 457
        13.2.4 Particle displacement of a point source
               deformation rate, point radiation
               characteristic ................................. 461
        13.2.5 Fourth-rank Green tensor: Stress tensor of
               a point source deformation rate ................ 464
   13.3 Two- and Three-Dimensional Elastodynamic Source
        Fields ................................................ 471
        13.1.1 Elastodynamic point source synthesis ........... 471
        13.3.2 Far-field approximations of three-dimensional
               elastodynamic source fields .................... 472
        13.3.3 Far-field approximations of two-dimensional
               elastodynamic source fields .................... 477
        13.3.4 -examples for two- and three-dimensional
               elastodynamic and acoustic source far-fields:
               Planar rectangular, planar circular, and
               planar strip-like force density distributions
               with constant amplitude ........................ 483
   13.4 Elementary Spherical Waves and Plane Waves ............ 496
        13.4.1 Spatial plane wave spectrum of the
               three-dimensional scalar Green function:
               Weyl's integral representation ................. 496
        13.4.2 Spatial cylindrical wave spectrum of the
               three-dimensional scalar Green function:
               Sommerfeld integral ............................ 499
14 Force Density and Dilatation Rate Sources on Surfaces of
   Homogeneous Isotropic Half-Spaces, Radiation Fields of
   Piezoelectric Transducers .................................. 501
   14.1 Acoustic Half-Spaces with Soft or Rigid Surfaces ...... 501
        14.1.1 AFIT-wavefronts of the line and strip-like
               rigidly baffled aperture radiator .............. 501
        14.1.2 Scalar half-space Green functions, Rayleigh-
               Sommerfeld integrals, plane wave spectral
               decomposition (integral representations of
               the Weyl type) ................................. 502
        14.1.3 Far-field evaluation of Rayleigh-Sommerfeld
               and Weyl integrals ............................. 514
   14.2 Strip-Like Normal and Tangential Force Density
        Distributions on the Stress-Free Surface of an
        Elastic Half-Space: Spectral Plane Wave
        Decomposition of the Two-Dimensional Second-Rank
        Green Tensor .......................................... 515
        14.2.1 EFIT-wavefronts of the linear and strip-like
               aperture radiator on the stress-free surface
               of an elastic half-space ....................... 515
        14.2.2 Strip-like normal and tangential force
               density distributions on the stress-free
               surface of an elastic half-space ............... 517
        14.2.3 Spectral plane wave decomposition of the
               two-dimensional second-rank Green tensor ....... 523
        14.2.4 Far-field radiation characteristics of normal
               and tangential line force densities on the
               surface of a stress-free half-space ............ 525
   14.3 Circular Normal Force Density Distribution on the
        Stress-Free Surface of an Elastic Half-Space: Point
        Source Characteristic ................................. 528
        14.3.1 Integral representation of the Sommerfeld
               type ........................................... 528
        14.3.2 Point source characteristics ................... 530
   14.4 Radiation Fields of Piezoelectric Transducers ......... 535
15 Scatterers in Homogeneous Isotropic Nondissipative
   Infinite Spaces ............................................ 555
   15.1 Huygens' Principle .................................... 556
        15.1.1 Mathematical foundation of Huygens' principle
               of elastodynamics based on physical arguments .. 557
        15.1.2 Mathematical derivation of Huygens' principle
               for scalar acoustic fields ..................... 564
        15.1.3 Mathematical derivation of Huygens' principle

               for elastodynamic fields ....................... 569
   15.2 Integral Equations for Secondary Surface Deformation
        Sources on Scatterers with Stress-Free Surfaces:
        Displacement Field Integral Equation and Stress
        Field Integral Equation ............................... 572
        15.2.1 Integral equations relating secondary sources .. 573
        15.2.2 Scatterers with stress-free surfaces: DFIE
               and Stress Field Integral Equation (SFIE) ...... 579
        15.2.3  Kirchhoff approximation in elastodynamics ..... 586
   15.3 Integral Equations for the Equivalent Sources of
        Penetrable Scatterers ................................. 592
        15.3.1 Lippmann-Schwinger integral equations for
               equivalent volume sources of inhomogeneous
               anisotropic scatterers ......................... 592
        15.3.2 Born approximation for inhomogeneous
               anisotropic scatterers ......................... 595
        15.3.3 Coupled integral equations for equivalent
               surface sources of homogeneous isotropic
               scatterers ..................................... 596
   15.4 Scattering Tensor; Far-Fields ......................... 598
        15.4.1 Scattering tensor .............................. 598
        15.4.2 Two-dimensional scalar scattering problems:
               Pulsed SH-far-fields of circular cylindrical
               voids and strip-like cracks .................... 602
        15.4.3 Two-dimensional scattering problems: Pulsed
               P-SV-far-fields of circular cylindrical voids
               and strip-like cracks .......................... 614
        15.4.4 Three-dimensional scattering problems: Pulsed
               P-S-far-fields of spherical voids .............. 626
   15.5 3D System Model of Pulsed Ultrasonic Scattering
        within Kirchhoff's Approximation ...................... 649
16 Inverse Scattering: US-NDT Imaging ......................... 665
   16.1 SAFT: Synthetic Aperture Focusing Technique ........... 665
        16.1.1 Integration along diffraction curves
               (surfaces) and back propagation ................ 665
        16.1.2 Pitch-catch and pulse-echo versions of SAFT .... 669
        16.1.3 SAFT with Hilbert transformed pulse data ....... 670
   16.2 FT-SAFT: Fourier Transform Synthetic Aperture
        Focusing Technique .................................... 673
        16.2.1 Scalar secondary sources: Contrast sources ..... 674
        16.2.2 Contrast source inversion ...................... 677
        16.2.3 Generalized holography ......................... 679
        16.2.4 FT-SAFT ........................................ 680
        16.2.5 Exact derivation of pulse-echo SAFT for
               planar measurement surfaces .................... 688
Appendix Collection of Mathematical Definitions and
Identities .................................................... 695
   A.l  Vector Identities ..................................... 695
   A.2  Tensor Identities ..................................... 696
        A.2.1  Permutation tensor ............................. 696
        A.2.2  Products ....................................... 698
        A.2.3  Traces ......................................... 701
        A.2.4  Determinants ................................... 702
        A.2.5  Adjoints and inverses .......................... 703
   A.3  Coordinate Systems .................................... 705
        A.3.1  Cartesian coordinates .......................... 705
   A.4  Curvilinear Orthogonal Coordinates .................... 708
   A.5  Cylindrical Coordinates ............................... 711
   A.6  Spherical Coordinates ................................. 715
   A.7  Identities for the Del Operator ....................... 720
        A.7.1  General scalar, vector, and tensor fields ...... 720
   A.8  Special Vector Fields Depending on the Vector of
        Position .............................................. 723
References .................................................... 727
Index ......................................................... 737


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:04 2019. Размер: 28,445 bytes.
Посещение N 1673 c 13.08.2013