List of Tables in Appendix A .................................. xxv
List of Figures in Appendix В ................................ xxix
Preface to Second Edition .................................... xxxi
Nomenclature ................................................. xxxv
Thermolab Excel®-Based Software for Thermodynamic
Properties, Flame Temperatures of Fuels, Conversion Units,
Math Functions and Other Properties ........................... xli
Four Important Equations in Analysis of Thermal Systems ....... xlv
1 Introduction ................................................. 1
Objectives ................................................... 1
1.1 Importance, Significance and Limitations ................ 1
1.2 Review of Thermodynamics ................................ 2
1.2.1 System and Boundary .............................. 2
1.2.2 Simple System .................................... 2
1.2.3 Constraints and Restraints ....................... 4
1.2.4 Composite System ................................. 4
1.2.5 Phase ............................................ 4
1.2.6 Homogeneous ...................................... 4
1.2.7 Pure Substance ................................... 5
1.2.8 Amount of Matter and Avogadro Number ............. 5
1.2.9 Mixture .......................................... 6
1.2.10 Property ......................................... 7
1.2.11 State ............................................ 8
1.2.12 Equation of State ............................... 10
1.2.13 Standard Temperature and Pressure ............... 10
1.2.14 Partial Pressure ................................ 11
1.2.15 Process ......................................... 11
1.2.16 Vapor-Liquid Phase Equilibrium .................. 11
1.3 Mathematical Background ................................ 14
1.3.1 Explicit and Implicit Functions and Total
Differentiation ................................. 14
1.3.2 Exact (Perfect) and Inexact (Imperfect)
Differentials ................................... 16
1.3.3 Relevance to Thermodynamics ..................... 20
1.3.4 Homogeneous Functions ........................... 22
1.3.5 LaGrange Multipliers ............................ 26
1.3.6 Composite Function .............................. 28
1.4 Overview of Microscopic/Nanothermodynamics ............. 29
1.4.1 Matter .......................................... 29
1.4.2 Intermolecular Forces and Potential Energy ...... 29
1.4.3 Collision Number, Mean Free Path, and
Molecular Velocity .............................. 33
1.4.4 Thermal and Internal Energy ..................... 37
1.4.5 Temperature ..................................... 39
1.4.6 Pressure ........................................ 40
1.4.7 Gas, Liquid, and Solid .......................... 42
1.4.8 Work ............................................ 45
1.4.9 Heat Transfer and Thermal Equilibrium ........... 46
1.4.10 Chemical Potential .............................. 46
1.4.11 Boiling/Phase Equilibrium ....................... 49
1.4.12 Entropy ......................................... 51
1.4.13 Properties in Mixtures: Partial Molal Property .. 57
1.5 Summary ................................................ 57
1.6 Appendix: Stokes and Gauss Theorems .................... 57
1.6.1 Stokes Theorem .................................. 58
1.6.2 Gauss-Ostrogradskii Divergence Theorem .......... 58
1.6.3 The Leibnitz Formula ............................ 59
2 First Law of Thermodynamics ................................. 61
Objectives .................................................. 61
2.1 Introduction ........................................... 61
2.2 Zeroth Law ............................................. 62
2.3 First Law for a Closed System .......................... 62
2.3.1 Energy Conservation Equation in Various Forms ... 63
2.4 Quasi-Equilibrium (QE) and Nonquasi-Equilibrium (NQE)
Processes .............................................. 70
2.4.1 Quasi-Equilibrium and Nonequilibrium Heat
Transfer ........................................ 70
2.4.2 Quasi-Equilibrium and Nonequilibrium Work
Transfer ........................................ 71
2.5 Enthalpy and First Law ................................. 79
2.5.1 First Law in Enthalpy Form ...................... 79
2.5.2 Reference Conditions for Enthalpy and Internal
Energy .......................................... 80
2.5.3 Specific Heats at Constant Pressure and Volume .. 82
2.6 Adiabatic Reversible Process for Ideal Gas with
Constant Specific Heats ................................ 85
2.7 First Law for an Open System ........................... 87
2.7.1 Conservation of Mass ............................ 88
2.7.2 Conservation of Energy for a Simple Open
System .......................................... 91
2.7.3 Conservation of Energy for Complex Open
System .......................................... 98
2.8 Applications of First Law for an Open System ........... 99
2.8.1 Heating of a Residence in Winter ................ 99
2.8.2 Charging of Gas into a Cylinder ................ 101
2.8.3 Discharging Gas from Cylinders ................. 104
2.8.4 Systems Involving Boundary Work ................ 105
2.8.5 Charging Cavern with CO2 Work Input ............ 108
2.9 Integral and Differential Forms of Conservation
Equations ............................................. Ill
2.9.1 Mass Conservation .............................. Ill
2.9.2 Energy Conservation ............................ 113
2.10 Summary ............................................... 115
2.11 Appendix .............................................. 116
2.11.1 Conservation Relations for a Deformable
Control Volume ................................. 116
3 Second Law of Thermodynamics and Entropy ................... 119
Objectives ................................................. 119
3.1 Introduction .......................................... 119
3.2 Thermal and Mechanical Energy Reservoirs .............. 120
3.3 Heat Engine and Heat Pump ............................. 120
3.3.1 Heat Engine .................................... 120
3.3.2 Heat Pump and Refrigeration Cycle .............. 120
3.3.3 Informal Statements ............................ 122
3.3.4 Formal Statement ............................... 123
3.3.5 Perpetual Motion Machines ...................... 123
3.4 Consequences of the Second Law ........................ 124
3.4.1 Reversible and Irreversible Processes .......... 124
3.4.2 Carnot's Corollaries ........................... 124
3.4.3 External and Internal Reversibility ............ 131
3.5 Entropy ............................................... 131
3.5.1 Mathematical Definition ........................ 131
3.5.2 Characteristics of Entropy ..................... 132
3.5.3 Relation between dS, δQ and T during an
Irreversible Process ........................... 134
3.5.4 Caratheodary Axiom II .......................... 137
3.6 Entropy Balance Equation for a Closed System .......... 137
3.6.1 Infinitesimal Form ............................. 137
3.6.2 Integrated Form ................................ 143
3.6.3 Rate Form ...................................... 143
3.6.4 Cyclical Form .................................. 143
3.6.5 Adiabatic Reversible Processes ................. 144
3.7 Irreversibility ....................................... 144
3.7.1 Irreversibility and Entropy of an Isolated
System ......................................... 144
3.7.2 Degradation and Quality of Energy .............. 146
3.8 Entropy Measurements and Evaluation ................... 148
3.8.1 The "ds" Relation for any Substance ............ 148
3.8.2 Entropy Change of Ideal Gases .................. 151
3.8.3 Entropy Incompressible Liquids ................. 155
3.8.4 Entropy Solids ................................. 156
3.8.5 Entropy during Phase Change .................... 157
3.8.6 Entropy of a Mixture of Ideal Gases ............ 159
3.9 Local and Global Equilibrium .......................... 162
3.10 Entropy: Energy Relation for Single Component
Incompressible Fluids ................................. 163
3.11 Third Law ............................................. 166
3.12 Entropy Balance Equation for an Open System ........... 168
3.12.1 General Expression ............................. 168
3.12.2 Evaluation of Entropy for a Control Volume ..... 173
3.13 Internally Reversible Work for an Open System ......... 178
3.14 Irreversible Processes and Efficiencies ............... 180
3.15 Cyclic Processes ...................................... 181
3.15.1 Vapor Power Cycle .............................. 181
3.15.2 Refrigeration Cycles ........................... 182
3.15.3 Cooling Mode ................................... 183
3.15.4 Heating Mode ................................... 183
3.15.5 Coefficient of Performance COP ................. 183
3.15.6 Carnot COP ..................................... 183
3.15.7 HP/Ton of Refrigeration ........................ 183
3.16 Entropy Balance in Integral and Differential Form ..... 183
3.16.1 Integral Form .................................. 184
3.16.2 Differential Form .............................. 184
3.16.3 Application to Open Systems .................... 185
3.17 Maximum Entropy and Minimum Energy .................... 187
3.17.1 Entropy Maximum (for Specified U, V, m) ........ 189
3.17.2 Internal Energy Minimum (for Specified S, V,
m) ............................................. 196
3.17.3 Enthalpy Minimum (for Specified S, P, m) ....... 201
3.17.4 Helmholtz Free Energy Minimum (for Specified
T, V, m) ....................................... 204
3.17.5 Gibbs Free Energy Minimum (for Specified T,
P, m) .......................................... 204
3.18 Generalized Derivation of Equilibrium for a Single
Phase ................................................. 209
3.18.1 Relation for Entropy Generation Rate ........... 209
3.18.2 Heat Transfer .................................. 212
3.18.3 Work Transfer .................................. 212
3.18.4 Species Transfer ............................... 212
3.19 Multiphase Multicomponent Equilibrium ................. 213
3.20 Summary ............................................... 214
3.21 Appendix .............................................. 214
3.21.1 Proof for Additive Nature of Entropy ........... 214
3.21.2 Relative Pressures and Volumes ................. 215
3.21.3 LaGrange Multiplier Method for Equilibrium ..... 216
4 Objectives ................................................. 219
4.1 Introduction .......................................... 219
4.2 Optimum Work and Irreversibility in a Closed System ... 220
4.2.1 Internally Reversible Process .................. 223
4.2.2 Useful or External Work ........................ 223
4.2.3 Internally Irreversible Process with No
External Irreversibility ....................... 224
4.2.4 Irreversibility or Gouy-Stodola Theorem ........ 224
4.2.5 Nonuniform Boundary Temperature in a System .... 224
4.3 Availability or Exergy Analyses for a Closed System ... 225
4.3.1 Absolute and Relative Availability (Exergy)
under Interactions with Ambient ................ 225
4.3.2 Irreversibility or Lost Work ................... 228
4.4 Generalized Availability Analysis ..................... 235
4.4.1 Steam Availabilities Actual Work and Optimum
Work ........................................... 235
4.4.2 Lost Work Rate, Irreversibility Rate,
Availability Loss .............................. 237
4.4.3 Availability Balance Equation in Terms of
Actual Work .................................... 238
4.4.4 Irreversibility Due to Heat Transfer ........... 238
4.4.5 Multiple Inlets and Exits ...................... 239
4.4.6 Multiple Components ............................ 239
4.4.7 Applications of the Availability Balance
Equation ....................................... 240
4.4.8 Gibbs Function ................................. 248
4.4.9 Closed System (Nonflow Systems) and Closed
System Availabilities .......................... 248
4.5 Availability/Exergetic Efficiency ..................... 253
4.5.1 Heat Engines ................................... 253
4.5.2 Heat Pumps and Refrigerators ................... 258
4.5.3 Work-Producing and Consumption Devices ......... 261
4.5.4 Flow Processes or Heat Exchangers .............. 265
4.5.5 Availability/Metabolic Efficiency for
Biological Systems ............................. 266
4.5.6 Differences among Actual, Isentropic and
Optimum Processes in a Work Device ............. 267
4.6 Chemical Availability ................................. 267
4.6.1 Open System .................................... 268
4.6.2 Closed System .................................. 277
4.7 Integral and Differential Forms of Availability
Balance ............................................... 279
4.7.1 Integral Form .................................. 279
4.7.2 Differential Form .............................. 279
4.7.3 S ome Applications ............................. 280
4.8 Summary ............................................... 283
5 Postulatory (Gibbsian) Thermodynamics ...................... 285
Objectives ................................................. 285
5.1 Introduction .......................................... 285
5.2 Classical Rationale for Postulatory Approach .......... 285
5.3 Simple Compressible Substance ......................... 288
5.4 Legendre Transform .................................... 288
5.4.1 Simple Legendre Transform ...................... 288
5.4.2 Relevance to Thermodynamics .................... 290
5.4.3 Generalized Legendre Transform ................. 291
5.5 Application of Legendre Transform ..................... 295
5.6 Work Modes and Generalized State Relation ............. 296
5.6.1 Electrical Work ................................ 296
5.6.2 Elastic Work ................................... 296
5.6.3 Surface Tension Effects ........................ 296
5.6.4 Torsional Work ................................. 298
5.6.5 Work Involving Gravitational Field ............. 298
5.6.6 Generalized State Relation ..................... 299
5.7 Thermodynamic Postulates for Simple Systems ........... 299
5.7.1 Postulate I .................................... 299
5.7.2 Postulate II ................................... 300
5.7.3 Posmlate III ................................... 300
5.7.4 Postulate IV ................................... 300
5.8 Fundamental Equations in Thermodynamics ............... 300
5.8.1 Entropy ........................................ 300
5.8.2 Energy ......................................... 301
5.8.3 Intensive and Extensive Properties ............. 302
5.9 Summary ............................................... 304
6 State Relationships for Real Gases and Liquids ............. 305
Objectives ................................................. 305
6.1 Introduction .......................................... 305
6.2 Equations of State .................................... 306
6.3 Virial Equations ...................................... 307
6.3.1 Exact Virial Equation .......................... 308
6.3.2 Approximate Virial Equation .................... 308
6.4 Clausius-I Equation of State .......................... 309
6.5 VW Equation of State .................................. 311
6.6 Redlich-Kwong Equation of State ....................... 317
6.7 Other Two-Parameter Equations of State ................ 318
6.8 Compressibility Charts (Principle of Corresponding
States) ............................................... 323
6.9 Boyle Temperature and Boyle Curves .................... 327
6.9.1 Boyle Temperature .............................. 327
6.9.2 Boyle Curve .................................... 328
6.10 Deviation Function .................................... 328
6.11 Three Parameter Equations of State .................... 330
6.11.1 Critical Compressibility Factor (ZJ-Based
Equations ...................................... 331
6.11.2 Pitzer Factor .................................. 331
6.11.3 Other Three Parameter Equations of State ....... 333
6.12 Generalized Equation of State ......................... 334
6.13 Empirical Equations of State .......................... 336
6.13.1 Benedict-Webb-Rubin Equation ................... 336
6.13.2 Beatie-Bridgemann (BB) Equation of State ....... 336
6.13.3 Modified BWR Equation .......................... 336
6.13.4 Lee-Kesler Equation of State ................... 336
6.13.5 Martin-Hou ..................................... 337
6.14 State Equations for Liquids/Solids .................... 337
6.14.1 Generalized State Equation ..................... 337
6.14.2 Murnaghan Equation of State .................... 340
6.14.3 Racket Equation for Saturated Liquids .......... 340
6.14.4 Relation for Densities of Saturated Liquids
and Vapors ..................................... 341
6.14.5 Lyderson Charts (for Liquids) .................. 341
6.14.6 Incompressible Approximation ................... 341
6.15 Summary ............................................... 342
6.16 Appendix .............................................. 342
6.16.1 Cubic Equation ................................ 342
6.16.2 Another Explanation for the Attractive Force .. 343
6.16.3 Critical Temperature and Attraction Force
Constant ...................................... 343
7 Thermodynamic Properties of Pure Fluids .................... 345
Objectives ................................................. 345
7.1 Introduction .......................................... 345
7.2 Ideal Gas Properties .................................. 346
7.3 James Clark Maxwell, 1831-1879 Relations .............. 347
7.3.1 First Maxwell Relation ......................... 347
7.3.2 Second Maxwell Relation ........................ 348
7.3.3 Third Maxwell Relation ......................... 349
7.3.4 Fourth Maxwell Relation ........................ 353
7.3.5 Summary of Relations ........................... 356
7.4 Generalized Relations ................................. 357
7.4.1 Entropy (ds) Relation .......................... 357
7.4.2 Internal Energy (du) Relation .................. 367
7.4.3 Enthalpy (dh) Relation ......................... 370
7.4.4 Relation for (cp-cv) ........................... 372
7.4.5 Internal Energy and Entropy of Photons ......... 373
7.5 Evaluation of Thermodynamic Properties ................ 374
7.5.1 Helmholtz Function ............................. 374
7.5.2 Entropy ........................................ 378
7.5.3 Pressure ....................................... 381
7.5.4 Internal Energy ................................ 381
7.5.5 Enthalpy ....................................... 384
7.5.6 Gibbs Free Energy or Chemical Potential ........ 389
7.5.7 Fugacity Coefficient ........................... 392
7.6 Pitzer Effect ......................................... 392
7.7 Kesler Equation of State (KES) and Kesler Tables ...... 394
7.8 Fugacity .............................................. 395
7.8.1 Fugacity Coefficient ........................... 395
7.8.2 Physical Meaning ............................... 397
7.8.3 Phase Equilibrium .............................. 398
7.8.4 Subcooled and Superheated Liquid ............... 398
7.8.5 Subcooled Vapor ................................ 399
7.9 Experiments to Measure (u0 - u) ....................... 401
7.10 Vapor/Liquid Equilibrium Curve ........................ 403
7.10.1 Minimization of Potentials ..................... 403
7.10.2 Real Gas Equations ............................. 407
7.10.3 Heat of Vaporization ........................... 411
7.10.4 Vapor Pressure and the Clapeyron Equation ...... 413
7.10.5 Empirical Relations ............................ 417
7.10.6 Saturation Relations with Surface Tension
Effects ........................................ 419
7.10.7 Pitzer Factor from Saturation Relations ........ 423
7.11 Throttling Processes .................................. 423
7.11.1 Joule-Thomson Coefficient ...................... 423
7.11.2 Isentropic Cooling ............................. 425
7.11.3 Temperature Change during Throttling ........... 427
7.11.4 Enthalpy Correction Charts and Joule-Thomson
Coefficient .................................... 429
7.11.5 Inversion Curves ............................... 430
7.11.6 Throttling of Saturated or Subcooled Liquids ... 433
7.11.7 Throttling of Vapors ........................... 434
7.11.8 Throttling in Closed Systems ................... 434
7.12 Development of Thermodynamic Tables ................... 438
7.12.1 Procedure for Determining Thermodynamic
Properties ..................................... 438
7.12.2 Entropy ........................................ 442
7.13 Summary ............................................... 443
8 Thermodynamic Properties of Mixtures ....................... 445
Objectives ................................................. 445
8.1 Introduction .......................................... 445
8.2 Generalized Relations and Partial and Mixture Molal
Properties ............................................ 446
8.2.1 Mixture Composition ............................ 446
8.2.2 Generalized Relations .......................... 448
8.2.3 Partial Molal Property and Characteristics ..... 448
8.3 Useful Relations for Partial Molal Properties ......... 455
8.3.1 Binary Mixture ................................. 455
8.3.2 Multicomponent Mixture ......................... 456
8.3.3 Relations between Partial Molal and Pure
Properties ..................................... 461
8.4 Ideal Gas Mixture ..................................... 463
8.4.1 Volume ......................................... 463
8.4.2 Pressure ....................................... 464
8.4.3 Internal Energy ................................ 465
8.4.4 Enthalpy ....................................... 465
8.4.5 Entropy ........................................ 466
8.4.6 Gibbs Free Energy .............................. 467
8.5 Ideal Solution ........................................ 467
8.5.1 Volume ......................................... 467
8.5.2 Internal Energy and Enthalpy ................... 467
8.5.3 Gibbs Function ................................. 467
8.5.4 Entropy ........................................ 468
8.6 Fugacity .............................................. 469
8.6.1 Fugacity and Activity .......................... 469
8.6.2 Approximate Solutions for ................... 470
8.7 Excess Property ....................................... 480
8.8 Osmotic Pressure ...................................... 484
8.8.1 Real Solution .................................. 484
8.8.2 Ideal Solution ................................. 486
8.9 Molal Properties Using the Equations of State ......... 489
8.9.1 Mixing Rules for Equations of State ............ 489
8.9.2 Partial Molal Properties Using Mixture State
Equations ...................................... 496
8.10 Summary ............................................... 501
9 Phase Equilibrium for a Mixture ............................ 503
Objectives ................................................. 503
9.1 Introduction .......................................... 503
9.2 Miscible, Immiscible, and Partially Miscible Mixture .. 504
9.3 Phase Equilibrium ..................................... 504
9.3.1 Two-Phase System ............................... 504
9.4 Simplified Criteria for Phase Equilibrium ............. 508
9.4.1 General Criteria for Any Solution .............. 508
9.4.2 Ideal Solution and Raoult's Law ................ 509
9.5 Pressure and Temperature Diagrams ..................... 515
9.5.1 Completely Miscible Mixtures ................... 515
9.5.2 Immiscible Mixture ............................. 529
9.5.3 Partially Miscible Liquids ..................... 531
9.6 Dissolved Gases in Liquids ............................ 533
9.6.1 Single Component Gas ........................... 534
9.6.2 Mixture of Gases and Liquids ................... 535
9.6.3 Approximate Solution-Henry's Law ............... 536
9.7 Deviations from Raoult's Law .......................... 538
9.7.1 Evaluation of the Activity Coefficient ......... 539
9.8 Summary ............................................... 540
9.9 Appendix .............................................. 540
9.9.1 Phase Rule for Single Component ................ 540
9.9.2 General Phase Rule for Multicomponent Fluids ... 541
9.9.3 Raoult's Law for the Vapor Phase of a Real
Gas ............................................ 543
10 Stability .................................................. 545
Objectives ................................................. 545
10.1 Introduction .......................................... 545
10.2 Criteria for an Isolated System ....................... 547
10.3 Mathematical Criterion for Stability .................. 551
10.3.1 Perturbation of Volume ......................... 551
10.3.2 Perturbation of Energy ......................... 556
10.3.3 Perturbation with Energy and Volume ............ 557
10.3.4 System with Specified Values of S, V, and m .... 563
10.3.5 Perturbation in Entropy at Specified Volumes ... 564
10.3.6 Perturbation in Entropy and Volume ............. 565
10.3.7 System with Specified Values of S, P, and m .... 566
10.3.8 System with Specified Values of T, V, and m .... 567
10.3.9 System with Specified Values of T, P, and m .... 569
10.4 Application to Boiling and Condensation ............... 572
10.4.1 Constant T and P ............................... 573
10.4.2 Constant Temperature and Volume ................ 575
10.4.3 Specified Values of S, P, and m ................ 578
10.4.4 Specified Values of S (or U), V, and m ......... 578
10.5 Entropy Generation during Irreversible
Transformation ........................................ 579
10.6 Spinodal Curves ....................................... 579
10.6.1 Single Component ............................... 579
10.6.2 Internal Energy along Spinodal Curve ........... 584
10.6.3 Multicomponent Mixtures ........................ 584
10.7 Determination of Vapor Bubble and Drop Sizes .......... 586
10.8 Summary ............................................... 587
11 Chemically Reacting Systems ................................ 589
Objectives ................................................. 589
11.1 Introduction .......................................... 589
11.2 Chemical Reactions and Combustion ..................... 590
11.2.1 Stoichiometric or Theoretical Reaction ......... 590
11.2.2 Reaction with Excess Air (Lean Combustion) ..... 592
11.2.3 Reaction with Excess Fuel (Rich Combustion) .... 592
11.2.4 Equivalence Ratio, Stoichiometric Ratio ........ 593
11.2.5 Gas Analysis ................................... 594
11.3 Thermochemistry ....................................... 596
11.3.1 Enthalpy of Formation (Chemical Enthalpy) ...... 596
11.3.2 Thermal or Sensible Enthalpy ................... 598
11.3.3 Total Enthalpy ................................. 599
11.3.4 Enthalpy of Reaction ........................... 599
11.3.5 Entropy, Gibbs Function, and Gibbs Function
of Formation ................................... 601
11.4 First Law Analyses for Chemically Reacting Systems .... 604
11.4.1 First Law ...................................... 604
11.4.2 Adiabatic Flame Temperature .................... 608
11.5 Combustion Analyses in the Case of Nonideal
Behavior .............................................. 611
11.5.1 Pure Component ................................. 612
11.5.2 Mixture ........................................ 612
11.6 Second Law Analysis of Chemically Reacting Systems .... 614
11.6.1 Entropy Generated during an Adiabatic
Chemical Reaction .............................. 614
11.6.2 Entropy Generated during an Isothermal
Chemical Reaction .............................. 617
11.7 Mass Conservation and Mole Balance Equations .......... 618
11.7.1 Nonsteady System ............................... 618
11.7.2 Steady State System ............................ 619
11.8 Overview on Energy Consumption and Combustion ......... 621
11.9 Summary ............................................... 621
12 Reaction Direction and Chemical Equilibrium ................ 623
Objectives ................................................. 623
12.1 Introduction .......................................... 623
12.2 Reaction Direction and Chemical Equilibrium ........... 624
12.2.1 Direction of Heat Transfer ..................... 624
12.2.2 Direction of Reaction .......................... 624
12.2.3 Evaluation of Properties during an
Irreversible Chemical Reaction ................. 626
12.3 Criteria for Direction of Reaction for Fixed-Mass
System ................................................ 628
12.3.1 General Criteria ............................... 628
12.3.2 Criteria in Terms of Chemical Force Potential
and Affinity(Af) for Single Reaction ........... 630
12.3.3 Criteria for Multiple Reactions ................ 639
12.3.4 An Approximate Criterion for Direction of
Reactions ...................................... 640
12.3.5 Evaluation of ΔG0 in Terms of Elementary
Reactions ...................................... 642
12.4 Generalized Chemical Equilibrium Relations ............ 642
12.4.1 Generalized Relation for the Chemical
Potential for any Substance .................... 642
12.4.2 Nonideal Mixtures and Solutions ................ 643
12.4.3 Reactions Involving Ideal Mixtures of Liquids
and Solids ..................................... 645
12.4.4 Ideal Mixture of Real Gases .................... 646
12.4.5 Ideal Gases .................................... 646
12.4.6 Gas, Liquid, and Solid Mixtures ................ 652
12.5 Van'tHoffEquation ..................................... 657
12.5.1 Effect of Temperature on K0(T) ................. 657
12.5.2 Effect of Pressure ............................. 661
12.6 Equilibrium for Multiple Reactions .................... 664
12.7 Adiabatic Flame Temperature with Chemical
Equilibrium ........................................... 665
12.8 Gibbs Minimization Method ............................. 665
12.8.1 General Criteria for Equilibrium ............... 665
12.8.2 Multiple Components ............................ 668
12.9 Summary ............................................... 672
12.10 Appendix: Equilibrium Constant for any Reaction in
Terms of Equilibrium Constants of Elements ............ 672
13 Availability Analysis for Reacting Systems ................. 673
Objectives ................................................. 673
13.1 Introduction .......................................... 673
13.2 Entropy Generation through Chemical Reactions ......... 674
13.3 Availability .......................................... 675
13.3.1 General Availability Balance Equation for
Combustion ..................................... 675
13.3.2 Availability Balance Equation for Steady-
State Nonreservoir Open Combustion Systems ..... 677
13.3.3 Availability Balance Equation for Closed
Combustion Systems ............................. 680
13.3.4 Availability Balance for Adiabatic Systems ..... 683
13.3.5 Energy and Exergy of a Power Plant ............. 687
13.3.6 Maximum Work Using Heat Exchanger and
Adiabatic Combustor ............................ 687
13.3.7 Availability Balance for Isothermal Reactors ... 692
13.3.8 Batteries ...................................... 695
13.4 Fuel Cells ............................................ 695
13.4.1 Oxidation States and Electrons ................. 696
13.4.2 H2-O2 Fuel Cell ................................ 696
13.4.3 Fuel Cells with Other Fuels .................... 700
13.4.4 Physical Meaning of Irreversibility during
Adiabatic Combustion ........................... 701
13.5 Fuel Availability ..................................... 702
13.5.1 Complete Combustion ............................ 702
13.5.2 Incomplete Combustion .......................... 705
13.6 1С Engines and Exergy ................................. 706
13.7 Summary ............................................... 708
14 Thermodynamics and Biological Systems ...................... 709
Objectives ................................................. 709
14.1 Introduction .......................................... 710
14.2 Biomass Processing .................................... 712
14.2.1 Digestion, Nutrients, and Product Transfer ...... 712
14.2.2 Energy Conversion ............................... 714
14.3 Food and Nutrients .................................... 717
14.3.1 Thermochemical Properties of Nutrients .......... 717
14.3.2 Metabolism of Nutrients ......................... 720
14.3.3 Mixture of CH, F, and P ......................... 723
14.4 Human Body ............................................ 726
14.4.1 Formulae ........................................ 726
14.4.2 Food Consumption and CO2 ........................ 728
14.5 Metabolism ............................................ 728
14.5.1 Daily Energy Expenditure (DEE) and Energy for
Physical Activity ............................... 728
14.5.2 Efficiencies .................................... 729
14.5.3 BMR Estimation .................................. 732
14.5.4 Energy Requirements ............................. 735
14.6 Thermochemistry of Metabolism in BS ................... 735
14.6.1 Air:Fuel Ratio .................................. 736
14.6.2 Nasal Gas Analyses and Fuel Burned .............. 739
14.6.3 Mass Conservation ............................... 742
14.6.4 Energy Conservation ............................. 745
14.6.5 First Law and Relation between Metabolic Rate
and Size ........................................ 749
14.7 Heat Transfer Analysis from the Body .................. 752
14.7.1 Conduction ...................................... 754
14.7.2 Convection ...................................... 755
14.7.3 Radiation ....................................... 755
14.7.4 Respiration ..................................... 756
14.7.5 Evaporation of Body Water ....................... 756
14.7.6 Overall Heat Loss ............................... 757
14.8 Body Temperature and Warm and Cold Blooded Animals .... 759
14.8.1 Temperature Regulation .......................... 759
14.8.2 Warm- and Cold-Blooded Animals .................. 761
14.8.3 Kinetics ........................................ 762
14.8.4 Fever ........................................... 763
14.9 Second Law and Entropy Generation in BS ............... 765
14.9.1 Second Law ...................................... 765
14.9.2 Entropy Generation .............................. 766
14.10 Entropy Generation through Chemical Reactions ........ 767
14.10.1 Entropy Balance Equation ....................... 767
14.10.2 Availability Balance Equation, Availability
and Metabolic Efficiencies ..................... 771
14.11 Life Span and Entropy ................................ 777
14.11.1 Energy, Entropy, and Biology ................... 778
14.11.2 Energy Hypothesis or Rate of Living Theory
(ROL) .......................................... 778
14.11.3 Entropy Hypothesis ............................. 780
14.11.4 Phenomenological Analyses ...................... 781
14.11.5 Entropy Generation and Life Span ............... 785
14.12 Allometry ............................................ 788
14.12.1 Introduction ................................... 788
14.12.2 Allometry Laws ................................. 789
14.12.3 Allometry Laws: Simplified Analysis for the
Scaling Laws ................................... 793
14.13 Summary .............................................. 799
Acknowledgment ................................................ 800
References .................................................... 800
Web Sites ..................................................... 803
Problems ...................................................... 805
A Summary of Chapterwise Formulae ............................. 893
Appendix A: Tables ............................................ 925
Appendix B: Figures .......................................... 1073
Bibliography ................................................. 1081
Index ........................................................ 1087
|