Simpson C. Homotopy theory of higher categories (Cambridge; New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSimpson C. Homotopy theory of higher categories. - Cambridge; New York: Cambridge University Press, 2012. - xviii, 634 p.: ill. - (New mathematical monographs; 19). - Ref.: p.618-629. - Ind.: p.630-634. - ISBN 978-0-521-51695-2
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
   Preface ..................................................... xi
   Acknowledgements .......................................... xvii

PART I  HIGHER CATEGORIES ....................................... 1
1  History and motivation ....................................... 3
2  Strict n-categories ......................................... 21
   2.1  Godement relations: the Eckmann-Hilton argument ........ 23
   2.2  Strict n-groupoids ..................................... 25
   2.3  The need for weak composition .......................... 38
   2.4  Realization functors ................................... 39
   2.5  n-groupoids with one object ............................ 40
   2.6  The case of the standard realization ................... 41
   2.7  Nonexistence of strict 3-groupoids of 3-type S2 ........ 43
3  Fundamental elements of n-categories ........................ 51
   3.1  A globular theory ...................................... 51
   3.2  Identities ............................................. 54
   3.3  Composition, equivalence and truncation ................ 54
   3.4  Enriched categories .................................... 57
   3.5  The (n + l)-category of n-categories ................... 58
   3.6  Poincare n-groupoids ................................... 60
   3.7  Interiors .............................................. 61
   3.8  The case n = ∞ ......................................... 62
4  Operadic approaches ......................................... 65
   4.1  May's delooping machine ................................ 65
   4.2  Baez-Dolan's definition ................................ 66
   4.3  Batanin's definition ................................... 69
   4.4  Trimble's definition and Cheng's comparison ............ 73
   4.5  Weak units ............................................. 75
   4.6  Other notions .......................................... 78
5  Simplicial approaches ....................................... 81
   5.1  Strict simplicial categories ........................... 81
   5.2  Segal's delooping machine .............................. 83
   5.3  Segal categories ....................................... 86
   5.4  Rezk categories ........................................ 91
   5.5  Quasicategories ........................................ 93
   5.6  Going between Segal categories and n-categories ........ 96
6  Weak enrichment over a cartesian model category:
   an introduction ............................................. 98
   6.1  Simplicial objects in fig.6 ............................... 98
   6.2  Diagrams over Δχ ....................................... 99
   6.3  Hypotheses on fig.6 ...................................... 100
   6.4  Precategories ......................................... 101
   6.5  Unitality ............................................. 102
   6.6  Rectification of Δχ-diagrams .......................... 104
   6.7  Enforcing the Segal condition ......................... 105
   6.8  Products, intervals and the model structure ........... 107
   
PART II CATEGORICAL PRELIMINARIES ............................. 109
7  Model categories ........................................... 111
   7.1  Lifting properties .................................... 112
   7.2  Quillen's axioms ...................................... 113
   7.3  Left properness ....................................... 116
   7.4  The Kan-Quillen model category of simplicial sets ..... 119
   7.5  Homotopy liftings and extensions ...................... 121
   7.6  Model structures on diagram categories ................ 124
   7.7  Cartesian model categories ............................ 129
   7.8  Internal Horn ......................................... 132
   7.9  Enriched categories ................................... 135
8  Cell complexes in locally presentable categories ........... 144
   8.1  Locally presentable categories ........................ 146
   8.2  The small object argument ............................. 151
   8.3  More on cell complexes ................................ 154
   8.4  Cofibrantly generated, combinatorial and tractable
        model categories ...................................... 168
   8.5  Smith's recognition principle ......................... 170
   8.6  Injecfive cofibrations in diagram categories .......... 177
   8.7  Pseudo-generating sets ................................ 183
9  Direct left Bousfield localization ......................... 192
   9.1  Projection to a subcategory of local objects .......... 192
   9.2  Weak monadic projection ............................... 199
   9.3  New weak equivalences ................................. 208
   9.4  Invariance properties ................................. 211
   9.5  New fibrations ........................................ 216
   9.6  Pushouts by new trivial cofibrations .................. 218
   9.7  The model category structure .......................... 220
   9.8  Transfer along a left Quillen functor ................. 222
   
PART III GENERATORS AND RELATIONS ............................. 225
10 Precategories .............................................. 227
   10.1 Enriched precategories with a fixed set of objects .... 227
   10.2 The Segal conditions .................................. 229
   10.3 Varying the set of objects ............................ 230
   10.4 The category of precategories ......................... 232
   10.5 Basic examples ........................................ 233
   10.6 Limits, colimits and local presentability ............. 236
   10.7 Interpretations as presheaf categories ................ 242
11 Algebraic theories in model categories ..................... 251
   11.1 Diagrams over the categories fig.9 (n) .................... 252
   11.2 Imposing the product condition ........................ 257
   11.3 Algebraic diagram theories ............................ 263
   11.4 Unitality ............................................. 266
   11.5 Unital algebraic diagram theories ..................... 272
   11.6 The generation operation .............................. 273
   11.7 Reedy structures ...................................... 274
12 Weak equivalences .......................................... 275
   12.1 Local weak equivalences ............................... 275
   12.2 Unitalization adjunctions ............................. 280
   12.3 The Reedy structure ................................... 282
   12.4 Global weak equivalences .............................. 289
   12.5 Categories enriched over ho(fig.6) ....................... 292
   12.6 Change of enrichment category ......................... 294
13 Cofibrations ............................................... 297
   13.1 Skeleta and coskeleta ................................. 297
   13.2 Some natural precategories ............................ 302
   13.3 Projective cofibrations ............................... 304
   13.4 Injective cofibrations ................................ 307
   13.5 A pushout expression for the skeleta .................. 308
   13.6 Reedy cofibrations .................................... 310
   13.7 Relationship between the classes of cofibrations ...... 323
14 Calculus of generators and relations ....................... 326
   14.1 The T precategories ................................... 326
   14.2 Some trivial cofibrations ............................. 329
   14.3 Pushout by isotrivial cofibrations .................... 332
   14.4 An elementary generation step Gen ..................... 340
   14.5 Fixing the fibrant condition locally .................. 343
   14.6 Combining generation steps ............................ 344
   14.7 Functoriality of the generation process ............... 345
   14.8 Example: generators and relations for 1-categories .... 347
15 Generators and relations for Segal categories .............. 350
   15.1 Segal categories ...................................... 350
   15.2 The Poincaré-Segal groupoid ........................... 352
   15.3 Looping and delooping ................................. 355
   15.4 The calculus .......................................... 359
   15.5 Computing the loop space .............................. 370
   15.6 Example: π3(S2) ....................................... 378
   
PART IV THE MODEL STRUCTURE ................................... 383
16 Sequentially free precategories ............................ 385
   16.1 Imposing the Segal condition on ϒ ..................... 385
   16.2 Sequentially free precategories in general ............ 387
17 Products ................................................... 397
   17.1 Products of sequentially free precategories ........... 397
   17.2 Products of general precategories ..................... 408
   17.3 The role of unitality, degeneracies and higher 
        coherences ............................................ 416
   17.4 Why we can't truncate Δ ............................... 419
18 Intervals .................................................. 421
   18.1 Contractible objects and intervals in fig.6 .............. 422
   18.2 Intervals for fig.6-enriched precategories ............... 424
   18.3 The versality property ................................ 429
   18.4 "Contractibility of intervals for X-precategories ..... 432
   18.5 Construction of a left Quillen functor fig.8fig.6 ......... 433
   18.6 Contractibility in general ............................ 435
   18.7 Pushout of trivial cofibrations ....................... 437
   18.8 A versality property .................................. 442
19 The model category of fig.6 -enriched precategories ........... 444
   19.1 A standard factorization .............................. 444
   19.2 The model structures .................................. 446
   19.3 The cartesian property ................................ 449
   19.4 Properties of fibrant objects ......................... 450
   19.5 The model category of strict fig.6-enriched categories ... 450
   
PART V HIGHER CATEGORY THEORY ................................. 453
20 Iterated higher categories ................................. 455
   20.1 Initialization ........................................ 456
   20.2 Notation for n-categories ............................. 457
   20.3 Truncation and equivalences ........................... 466
   20.4 Homotopy types and higher groupoids ................... 469
   20.5 The (n + l)-category nCAT ............................. 411
21 Higher categorical techniques .............................. 480
   21.1 The opposite category ................................. 481
   21.2 Equivalent objects .................................... 481
   21.3 Homotopies and the homotopy 2-category ................ 484
   21.4 Constructions with fig.7 .................................. 489
   21.5 Acyclicity of inversion ............................... 495
   21.6 Localization and interior ............................. 499
   21.7 Limits ................................................ 506
   21.8 Colimits .............................................. 510
   21.9 Invariance properties ................................. 511
   21.10 Limits of diagrams ................................... 516
22 Limits of weak enriched categories ......................... 527
   22.1 Cartesian families .................................... 528
   22.2 The Yoneda embeddings ................................. 531
   22.3 Universe considerations ............................... 536
   22.4 Diagrams in quasifibrant precategories ................ 538
   22.5 Extension properties .................................. 543
   22.6 Limits of weak enriched categories .................... 553
   22.7 Cardinality ........................................... 563
   22.8 Splitting idempotents ................................. 567
   22.9 Colimits of weak enriched categories .................. 576
   22.10 Fiber products and amalgamated sums .................. 592
        Stabilization ......................................... 596
   23.1 Minimal dimension ..................................... 598
   23.2 The stabilization hypothesis .......................... 608
   23.3 Suspension and free monoidal categories ............... 611

   Epilogue ................................................... 616
   References ................................................. 618
   Index ...................................................... 630


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:02 2019. Размер: 16,872 bytes.
Посещение N 1334 c 06.08.2013