Preface ......................................................... v
Godehard Link
Introduction. Bertrand Russell - The Invention of Mathematical
Philosophy ...................................................... 1
W. Hugh Woodin
Set Theory after Russell: The Journey Back to Eden ............. 29
Harvey M. Friedman
A Way Out ...................................................... 49
Sy D. Friedman
Completeness and Iteration in Modern Set Theory ................ 85
Kai Hauser
Was sind und was sollen (neue) Axiome? ......................... 93
Gerhard Jäger and Dieter Probst
Iterating Σ Operations in Admissible Set Theory without
Foundation: A Further Aspect of Metapredicative Mahlo ......... 119
Solomon Feferman
Typical Ambiguity: Trying to Have Your Cake and Eat It Too .... 135
Karl-Georg Niebergall
Is ZF Finitistically Reducible? ............................... 153
Tobias Hürter
Inconsistency in the Real World ............................... 181
Michael Rathjen
Predicativity, Circularity, and Anti-Foundation ............... 191
John L. Bell
Russell's Paradox and Diagonalization in a Constructive
Context ....................................................... 221
Peter Schuster and Helmut Schwichtenberg
Constructive Solutions of Continuous Equations ................ 227
Kai F. Wehmeier
Russell's Paradox in Consistent Fragments of Frege's
Grundgesetze der Arithmetik ................................... 247
Andrea Cantini
On a Russellian Paradox about Propositions and Troth .......... 259
Hartry Field
The Consistency of the Naive Theory of Properties ............. 285
Ulrich Blau
The Significance of the Largest and Smallest Numbers for the
Oldest Paradoxes .............................................. 311
Nicholas Griffin
The Prehistory of Russell's Paradox ........................... 349
Gregory Landini
Logicism's 'Insolubilia' and Their Solution by Russell's
Substitutional Theory ......................................... 373
Philippe de Rouilhan
Substitution and Types: Russell's Intermediate Theory ......... 401
Francisco Rodríguez-Consuegra
Prepositional Ontology and Logical Atomism .................... 417
Bernard Linsky
Classes of Classes and Classes of Functions in Principia
Mathematica ................................................... 435
Allen P. Hazen
A "Constructive" Proper Extension of Ramified Type Theory
(The Logic of Principia Mathematica, Second Edition,
Appendix B) ................................................... 449
Andrew D. Irvine
Russell on Method ............................................. 481
Volker Peckhaus
Paradoxes in Gottingen ........................................ 501
David Charles McCarty
David Hilbert and Paul du Bois-Reymond: Limits and Ideals ..... 517
Jan Mycielski
Russell's Paradox and Hilbert's (much Forgotten) View of Set
Theory ........................................................ 533
Shaughan Lavine
Objectivity: The Justification for Extrapolation .............. 549
Geoffrey Hellman
Russell's Absolutism vs. (?) Structuralism .................... 561
Robert S.D. Thomas
Mathematicians and Mathematical Objects ....................... 577
Holger Sturm
Russell's Paradox and Our Conception of Properties, or: Why
Semantics Is no Proper Guide to the Nature of Properties ...... 591
Vann McGee
The Many Lives of Ebenezer Wilkes Smith ....................... 611
Albert Visser
What Makes Expressions Meaningful? A Reflection on Contexts
and Actions ................................................... 625
List of Contributors .......................................... 645
Name Index .................................................... 649
Subject Index ................................................. 653
|