Hartshorne R. Deformation theory (New York; London, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHartshorne R. Deformation theory. - New York; London: Springer, 2010. - vi, 234 p.: ill. - (Graduate texts in mathematics; 257). - Ref.: p.217-224. - Ind.: p.225-234. - ISBN 978-1-4419-1595-5
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ....................................................... vii
Introduction .................................................... 1
1  First-Order Deformations ..................................... 5
   1  The Hilbert Scheme ........................................ 5
   2  Structures over the Dual Numbers .......................... 9
   3  The Tl Functors .......................................... 18
   4  The Infinitesimal Lifting Property ....................... 26
   5  Deformations of Rings .................................... 35
2  Higher-Order Deformations ................................... 45
   6  Subschemes and Invertible Sheaves ........................ 45
   7  Vector Bundles and Coherent Sheaves ...................... 53
   8  Cohen-Macaulay in Codimension Two ........................ 58
   9  Complete Intersections and Gorenstein in Codimension
      Three .................................................... 73
   10 Obstructions to Deformations of Schemes .................. 78
   11 Obstruction Theory for a Local Ring ...................... 85
   12 Dimensions of Families of Space Curves ................... 88
   13 A Nonreduced Component of the Hilbert Scheme ............. 91
3  Formal Moduli ............................................... 99
   14 Plane Curve Singularities ............................... 100
   15 Functors of Artin Rings ................................. 106
   16 Schlessinger's Criterion ................................ 111
   17 Hilb and Pic are Pro-representable ...................... 118
   18 Miniversal and Universal Deformations of Schemes ........ 120
   19 Versal Families of Sheaves .............................. 128
   20 Comparison of Embedded and Abstract Deformations ........ 131
   21 Algebraization of Formal Moduli ......................... 138
   22 Lifting from Characteristic p to Characteristic 0 ....... 144
4  Global Questions ........................................... 149
   23 Introduction to Moduli Questions ........................ 150
   24 Some Representable Functors ............................. 156
   25 Curves of Genus Zero .................................... 164
   26 Moduli of Elliptic Curves ............................... 167
   27 Moduli of Curves ........................................ 177
   28 Moduli of Vector Bundles ................................ 188
   29 Smoothing Singularities ................................. 199
   References ................................................. 217
Index ......................................................... 225


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:58 2019. Размер: 6,186 bytes.
Посещение N 1233 c 06.08.2013