Har-Peled S. Geometric approximation algorithms (Providence, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHar-Peled S. Geometric approximation algorithms. - Providence: American Mathematical Society, 2011. - xii, 362 p.: ill. (some col.). - (Mathematical surveys and monographs; vol.173). - Bibliogr.: p.349-356. - Ind.: p.357-362. - ISBN 978-0-8218-4911-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xi

Chapter 1  The Power of Grids - Closest Pair and Smallest 
Enclosing Disk .................................................. 1
1.1  Preliminaries .............................................. 1
1.2  Closest pair ............................................... 1
1.3  A slow 2-approximation algorithm for the k-enclosing
     disk ....................................................... 5
1.4  A linear time 2-approximation for the k-enclosing disk ..... 6
1.5  Bibliographical notes ..................................... 10
1.6  Exercises ................................................. 11

Chapter 2  Quadtrees - Hierarchical Grids ...................... 13
2.1  Quadtrees - a simple point-location data-structure ........ 13
2.2  Compressed quadtrees ...................................... 15
2.3  Dynamic quadtrees ......................................... 20
2.4  Bibliographical notes ..................................... 24
2.5  Exercises ................................................. 26

Chapter 3  Well-Separated Pair Decomposition ................... 29
3.1  Well-separated pair decomposition (WSPD) .................. 29
3.2  Applications of WSPD ...................................... 33
3.3  Semi-separated pair decomposition (SSPD) .................. 40
3.4  Bibliographical notes ..................................... 43
3.5  Exercises ................................................. 44

Chapter 4  Clustering - Definitions and Basic Algorithms ....... 47
4.1  Preliminaries ............................................. 47
4.2  On k-center clustering .................................... 49
4.3  On k-median clustering .................................... 51
4.4  On k-means clustering ..................................... 57
4.5  Bibliographical notes ..................................... 57
4.6  Exercises ................................................. 59

Chapter 5  On Complexity, Sampling, and e-Nets and e-Samples ... 61
5.1  VC dimension .............................................. 61
5.2  Shattering dimension and the dual shattering dimension .... 64
5.3  On ε-nets and ε-sampling .................................. 70
5.4  Discrepancy ............................................... 75
5.5  Proof of the ε-net theorem ................................ 80
5.6  A better bound on the growth function ..................... 82
5.7  Bibliographical notes ..................................... 83
5.8  Exercises ................................................. 84

Chapter 6  Approximation via Reweighting ....................... 87
6.1  Preliminaries ............................................. 87
6.2  Computing a spanning tree with low crossing number ........ 88
6.3  Geometric set cover ....................................... 94
6.4  Geometric set cover via linear programming ................ 98
6.5  Bibliographical notes .................................... 100
6.6  Exercises ................................................ 100

Chapter 7  Yet Even More on Sampling .......................... 103
7.1  Introduction ............................................. 103
7.2  Applications ............................................. 106
7.3  Proof of Theorem 7.7 ..................................... 109
7.4  Bibliographical notes .................................... 119
7.5  Exercises ................................................ 119

Chapter 8  Sampling and the Moments Technique ................. 121
8.1  Vertical decomposition ................................... 121
8.2  General settings ......................................... 125
8.3  Applications ............................................. 128
8.4  Bounds on the probability of a region to be created ...... 130
8.5  Bibliographical notes .................................... 131
8.6  Exercises ................................................ 133

Chapter 9  Depth Estimation via Sampling ...................... 135
9.1  The at most k-levels ..................................... 135
9.2  The crossing lemma ....................................... 136
9.3  A general bound for the at most k-weight ................. 140
9.4  Bibliographical notes .................................... 142
9.5  Exercises ................................................ 143

Chapter 10 Approximating the Depth via Sampling and 
Emptiness ..................................................... 145
10.1 From emptiness to approximate range counting ............. 145
10.2 Application: Halfplane and halfspace range counting ...... 148
10.3 Relative approximation via sampling ...................... 149
10.4 Bibliographical notes .................................... 150
10.5 Exercises ................................................ 150

Chapter 11 Random Partition via Shifting ...................... 151
11.1 Partition via shifting ................................... 151
11.2 Hierarchical representation of a point set ............... 155
11.3 Low quality ANN search ................................... 158
11.4 Bibliographical notes .................................... 160
11.5 Exercises ................................................ 160

Chapter 12 Good Triangulations and Meshing .................... 163
12.1 Introduction - good triangulations ....................... 163
12.2 Triangulations and fat triangulations .................... 164
12.3 Analysis ................................................. 168
12.4 The result ............................................... 175
12.5 Bibliographical notes .................................... 176

Chapter 13 Approximating the Euclidean Traveling Salesman
Problem (TSP) ................................................. 177
13.1 The TSP problem - introduction ........................... 177
13.2 When the optimal solution is friendly .................... 178
13.3 TSP approximation via portals and sliding quadtrees ...... 182
13.4 Bibliographical notes .................................... 190
13.5 Exercises ................................................ 190

Chapter 14 Approximating the Euclidean TSP Using Bridges ...... 191
14.1 Overview ................................................. 191
14.2 Cuts and bridges ......................................... 192
14.3 The dynamic programming .................................. 198
14.4 The result ............................................... 202
14.5 Bibliographical notes .................................... 202

Chapter 15 Linear Programming in Low Dimensions ............... 203
15.1 Linear programming ....................................... 203
15.2 Low-dimensional linear programming ....................... 205
15.3 Linear programming with violations ....................... 208
15.4 Approximate linear programming with violations ........... 209
15.5 LP-type problems ......................................... 210
15.6 Bibliographical notes .................................... 213
15.7 Exercises ................................................ 215

Chapter 16 Polyhedrons, Polytopes, and Linear Programming ..... 217
16.1 Preliminaries ............................................ 217
16.2 Properties of polyhedrons ................................ 219
16.3 Vertices of a polytope ................................... 227
16.4 Linear programming correctness ........................... 230
16.5 Bibliographical notes .................................... 232
16.6 Exercises ................................................ 232

Chapter 17 Approximate Nearest Neighbor Search in Low 
Dimension ..................................................... 233
17.1 Introduction ............................................. 233
17.2 The bounded spread case .................................. 233
17.3 ANN - the unbounded general case ......................... 236
17.4 Low quality ANN search via the ring separator tree ....... 238
17.5 Bibliographical notes .................................... 240
17.6 Exercises ................................................ 242

Chapter 18 Approximate Nearest Neighbor via Point-Location .... 243
18.1 ANN using point-location among balls ..................... 243
18.2 ANN using point-location among approximate balls ......... 250
18.3 ANN using point-location among balls in low dimensions ... 252
18.4 Approximate Voronoi diagrams ............................. 253
18.5 Bibliographical notes .................................... 255
18.6 Exercises ................................................ 256

Chapter 19 Dimension Reduction - The Johnson-Lindenstrauss
(JL) Lemma .................................................... 257
19.1 The Brunn-Minkowњki inequality ........................... 257
19.2 Measure concentration on the sphere ...................... 260
19.3 Concentration of Lipschitz functions ..................... 263
19.4 The Johnson-Lindenstrauss lemma .......................... 263
19.5 Bibliographical notes .................................... 266
19.6 Exercises ................................................ 267

Chapter 20 Approximate Nearest Neighbor (ANN) Search in 
High Dimensions ............................................... 269
20.1 ANN on the hypercube ..................................... 269
20.2 LSH and ANN in Euclidean space ........................... 274
20.3 Bibliographical notes .................................... 276

Chapter 21 Approximating a Convex Body by an Ellipsoid ........ 279
21.1 Ellipsoids ............................................... 279
21.2 Bibliographical notes .................................... 282

Chapter 22 Approximating the Minimum Volume Bounding Box 
of a Point Set ................................................ 283
22.1 Some geometry ............................................ 283
22.2 Approximating the minimum volume bounding box ............ 284
22.3 Exact algorithm for the minimum volume bounding box ...... 286
22.4 Approximating the minimum volume bounding box in three
     dimensions ............................................... 288
22.5 Bibliographical notes .................................... 289
22.6 Exercises ................................................ 289

Chapter 23 Coresets ........................................... 291
23.1 Coreset for directional width ............................ 291
23.2 Approximating the extent of lines and other creatures .... 297
23.3 Extent of polynomials .................................... 301
23.4 Roots of polynomials ..................................... 302
23.5 Bibliographical notes .................................... 306
23.6 Exercises ................................................ 306

Chapter 24 Approximation Using Shell Sets ..................... 307
24.1 Covering problems, expansion, and shell sets ............. 307
24.2 Covering by cylinders .................................... 310
24.3 Bibliographical notes .................................... 313
24.4 Exercises ................................................ 313

Chapter 25 Duality ............................................ 315
25.1 Duality of lines and points .............................. 315
25.2 Higher dimensions ........................................ 318
25.3 Bibliographical notes .................................... 319
25.4 Exercises ................................................ 321

Chapter 26 Finite Metric Spaces and Partitions ................ 323
26.1 Finite metric spaces ..................................... 323
26.2 Random partitions ........................................ 325
26.3 Probabilistic embedding into trees ....................... 327
26.4 Embedding any metric space into Euclidean space .......... 329
26.5 Bibliographical notes .................................... 332
26.6 Exercises ................................................ 333

Chapter 27 Some Probability and Tail Inequalities ............. 335
27.1 Some probability background .............................. 335
27.2 Tail inequalities ........................................ 338
27.3 Hoeffding's inequality ................................... 342
27.4 Bibliographical notes .................................... 344
27.5 Exercises ................................................ 344

Chapter 28 Miscellaneous Prerequisite ......................... 347
28.1 Geometry and linear algebra .............................. 347
28.2 Calculus ................................................. 348
Bibliography .................................................. 349

Index ......................................................... 357


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:58 2019. Размер: 16,624 bytes.
Посещение N 1484 c 06.08.2013