Ablowitz M.J. Nonlinear dispersive waves: asymptotic analysis and solitons (Cambridge; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAblowitz M.J. Nonlinear dispersive waves: asymptotic analysis and solitons. - Cambridge; New York: Cambridge University Press, 2011. - xiv, 348 p.: ill. - (Cambridge texts in applied mathematics). - Ref.: p.334-344. - Ind.: p.345-348. - ISBN 978-1-107-01254-7
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
   Preface ..................................................... ix
   Acknowledgements ........................................... xiv

PART I  FUNDAMENTALS AND BASIC APPLICATIONS ..................... 1
1  Introduction ................................................. 3
   1.1  Solitons: Historical remarks ........................... 11
        Exercises .............................................. 14
2  Linear and nonlinear wave equations ......................... 17
   2.1  Fourier transform method ............................... 17
   2.2  Terminology: Dispersive and non-dispersive equations ... 19
   2.3  Parseval's theorem ..................................... 22
   2.4  Conservation laws ...................................... 22
   2.5  Multidimensional dispersive equations .................. 23
   2.6  Characteristics for first-order equations .............. 24
   2.7  Shock waves and the Rankine-Hugoniot conditions ........ 27
   2.8  Second-order equations: Vibrating string equation ...... 33
   2.9  Linear wave equation ................................... 35
   2.10 Characteristics of second-order equations .............. 37
   2.11 Classification and well-posedness of PDEs .............. 38
   Exercises ................................................... 42
3  Asymptotic analysis of wave equations: Properties and
   analysis of Fourier-type integrals .......................... 45
   3.1  Method of stationary phase ............................. 46
   3.2  Linear free Schrodinger equation ....................... 48
   3.3  Group velocity ......................................... 51
   3.4  Linear KdV equation .................................... 54
   3.5  Discrete equations ..................................... 61
   3.6  Burgers' equation and its solution: Cole-Hopf
        transformation ......................................... 68
   3.7  Burgers' equation on the semi-infinite interval ........ 71
   Exercises ................................................... 73
4  Perturbation analysis ....................................... 75
   4.1  Failure of regular perturbation analysis ............... 76
   4.2  Stokes-Poincare frequency-shift method ................. 78
   4.3  Method of multiple scales: Linear example .............. 81
   4.4  Method of multiple scales: Nonlinear example ........... 84
   4.5  Method of multiple scales: Linear and nonlinear
        pendulum ............................................... 86
   Exercises ................................................... 96
5  Water waves and KdV-type equations .......................... 98
   5.1  Euler and water wave equations ......................... 99
   5.2  Linear waves .......................................... 103
   5.3  Non-dimensionalization ................................ 105
   5.4  Shallow-water theory .................................. 106
   5.5  Solitary wave solutions ............................... 118
   Exercises .................................................. 128
6  Nonlinear Schrodinger models and water waves ............... 130
   6.1  NLS from Klein-Gordon ................................. 130
   6.2  NLS from KdV .......................................... 133
   6.3  Simplified model for the linear problem and
        "universality" ........................................ 138
   6.4  NLS from deep-water waves ............................. 141
   6.5  Deep-water theory: NLS equation ....................... 148
   6.6  Some properties of the NLS equation ................... 152
   6.7  Higher-order corrections to the NLS equation .......... 156
   6.8  Multidimensional water waves .......................... 158
   Exercises .................................................. 167
7  Nonlinear Schrodinger models in nonlinear optics ........... 169
   7.1  Maxwell equations ..................................... 169
   7.2  Polarization .......................................... 171
   7.3  Derivation of the NLS equation ........................ 174
   7.4  Magnetic spin waves ................................... 182
   Exercises .................................................. 185

PART II  INTEGRABILITY AND SOLITONS ........................... 187
8  Solitons and integrable equations .......................... 189
   8.1  Traveling wave solutions of the KdV equation .......... 189
   8.2  Solitons and the KdV equation ......................... 192
   8.3  The Miura transformation and conservation laws for
        the KdV equation ...................................... 193
   8.4  Time-independent Schrodinger equation and a
        compatible linear system .............................. 197
   8.5  Lax pairs ............................................. 198
   8.6  Linear scattering problems and associated nonlinear
        evolution equations ................................... 199
   8.7  More general classes of nonlinear evolution
        equations ............................................. 205
   Exercises .................................................. 210
9  The inverse scattering transform for the Korteweg-de
   Vries (KdV) equation ....................................... 214
   9.1  Direct scattering problem for the time-independent
        Schrodinger equation .................................. 215
   9.2  Scattering data ....................................... 219
   9.3  The inverse problem ................................... 222
   9.4  The time dependence of the scattering data ............ 224
   9.5  The Gel'fand-Levitan-Marchenko integral equation ...... 225
   9.6  Outline of the inverse scattering transform for the
        KdV equation .......................................... 227
   9.7  Soliton solutions of the KdV equation ................. 228
   9.8  Special initial potentials ............................ 232
   9.9  Conserved quantities and conservation laws ............ 235
   9.10 Outline of the IST for a general evolution system -
        including the nonlinear Schrodinger equation with
        vanishing boundary conditions ......................... 239
   Exercises .................................................. 256

PART III  APPLICATIONS OF NONLINEAR WAVES IN OPTICS ........... 259
10 Communications ............................................. 261
   10.1 Communications ........................................ 261
   10.2 Multiple-scale analysis of the NLS equation ........... 269
   10.3 Dispersion-management ................................. 274
   10.4 Multiple-scale analysis of DM ......................... 277
   10.5 Quasilinear transmission .............................. 298
   10.6 WDM and soliton collisions ............................ 303
   10.7 Classical soliton frequency and timing shifts ......... 306
   10.8 Characteristics of DM soliton collisions .............. 309
   10.9 DM soliton frequency and timing shifts ................ 310
11 Mode-locked lasers ......................................... 313
   11.1 Mode-locked lasers .................................... 314
   11.2 Power-energy-saturation equation ...................... 317

   References ................................................. 334
   Index ...................................................... 345


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:58 2019. Размер: 11,157 bytes.
Посещение N 1376 c 06.08.2013