Nakamura H. Nonadiabatic transition: concepts, basic theories and applications (Singapore; London, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNakamura H. Nonadiabatic transition: concepts, basic theories and applications. - 2nd ed. - Singapore; London: World Scientific, 2011. - 500 p.: ill. - Ref.: p.477-494. - Ind.: p.495-500. - ISBN-10 981-4329-77-0; ISBN-13 978-981-4329-77-4
 

Оглавление / Contents
 
Preface to the Second Edition ................................... v
Preface to the First Edition .................................. vii

Chapter 1  Introduction: What is "Nonadiabatic
Transition" ..................................................... 1

Chapter 2  Multi-Disciplinarity ................................. 7
2.1  Physics .................................................... 7
2.2  Chemistry ................................................. 12
2.3  Biology ................................................... 16
2.4  Economics ................................................. 17

Chapter 3  Historical Survey of Theoretical Studies ............ 19
3.1  Landau-Zener-Stueckelberg Theory .......................... 19
3.2  Rosen-Zener-Demkov Theory ................................. 28
3.3  Nikitin's Exponential Model ............................... 31
3.4  Nonadiabatic Transition Due to Coriolis Coupling and
     Dynamical State Representation ............................ 33

Chapter 4  Background Mathematics .............................. 41
4.1  Wentzel-Kramers-Brillouin Semiclassical Theory ............ 41
4.2  Stokes Phenomenon ......................................... 45

Chapter 5  Basic Two-State Theory for Time-Independent
Processes ...................................................... 53
5.1  Exact Solutions of the Linear Curve Crossing Problems ..... 53
     5.1.1  Landau-Zener type .................................. 53
     5.1.2  Nonadiabatic tunneling type ........................ 61
5.2  Complete Semiclassical Solutions of General Curve
     Crossing Problems ......................................... 64
     5.2.1  Landau-Zener (LZ) type ............................. 65
     5.2.2  Nonadiabatic Tunneling (NT) Type ................... 77
5.3  Non-Curve-Crossing Case ................................... 87
     5.3.1  Rosen-Zener-Demkov model ........................... 87
     5.3.2  Diabatically avoided crossing model ................ 88
5.4  Exponential Potential Model: Unification of the Landau-
     Zener and Rosen-Zener Models .............................. 91
     5.4.1  Model 1 - Exact Solution ........................... 91
     5.4.2  Model 2 - Exact Solution ........................... 97
     5.4.3  Model 3 - Semiclassical Solution ................... 99
5.5  Mathematical Implications ................................ 111
     5.5.1  Case (i) .......................................... 112
     5.5.2  Case (ii) ......................................... 115
     5.5.3  Case (iii) ........................................ 118

Chapter 6  Basic Two-State Theory for Time-Dependent
Processes ..................................................... 121
6.1  Exact Solution of Quadratic Potential Problem ............ 121
6.2  Semiclassical Solution in General Case ................... 126
     6.2.1  Two-crossing case: β ≥ 0 .......................... 126
     6.2.2  Diabatically avoided crossing case: β ≤ 0 ......... 129
6.3  Other Exactly Solvable Models ............................ 135

Chapter 7  Two-State Problems ................................. 145
7.1  Diagrammatic Technique ................................... 145
7.2  Inelastic Scattering ..................................... 149
7.3  Elastic Scattering with Resonances and Predissociation ... 151
7.4  Perturbed Bound States ................................... 155
7.5  Time-Dependent Periodic Crossing Problems ................ 157
7.6  Time-Dependent Nonlinear Equations Related to Bose-
     Einstein Condensate Problems ............................. 160
7.7  Wave Packet Dynamics in a Linearly Chirped Laser Field ... 163

Chapter 8  Effects of Coupling to Phonons and Quantum 
Devices ....................................................... 169
8.1  Effects of Coupling to Phonons ........................... 169
8.2  Quantum Devices .......................................... 176

Chapter 9  Multi-Channel Problems ............................. 181
9.1  Exactly Solvable Models .................................. 181
     9.1.1  Time-independent case ............................. 181
     9.1.2  Time-dependent case ............................... 183
9.2  Semiclassical Theory of Time-Independent Multi-Channel
     Problems ................................................. 188
     9.2.1  General framework ................................. 191
     9.2.2  Numerical example ................................. 197
9.3  Time-Dependent Problems .................................. 206

Chapter 10 Multi-Dimensional Problems ......................... 211
10.1 Classification of Surface Crossing ....................... 212
     10.1.1 Crossing seam ..................................... 212
     10.1.2 Conical intersection .............................. 213
     10.1.3 Renner-Teller effect .............................. 215
10.2 Reduction to One-Dimensional Multi-Channel Problem ....... 216
     10.2.1 Linear Jahn-Teller problem ........................ 216
     10.2.2 Electronically adiabatic chemical reaction ........ 222
10.3 Semiclassical Propagation Method ......................... 227
     10.3.1 Trajectory surface hopping method ................. 228
     10.3.2 Semiclassical initial value representation 
            method ............................................ 232
     10.3.3 Semiclassical frozen Gaussian propagation method .. 234
10.4  Nonadiabatic Transition State Theory .................... 241
     10.4.1 General formulation ............................... 241
     10.4.2 Improvement of the Marcus theory of electron 
            transfer .......................................... 244

Chapter 11 Complete Reflection and Bound States in the 
Continuum ..................................................... 247
11.1 One NT-Type Crossing Case ................................ 247
11.2 Diabatically Avoided Crossing (DAC) Case ................. 254
11.3 Two NT-Type Crossings Case ............................... 260
     11.3.1 At energies above the top of the barrier: 
            (Eu,∞) ........................................... 260
     11.3.2 At energies between the barrier top and the 
            higher crossing: {E+, Eu) ......................... 262
     11.3.3 At energies in between the two crossing regions:
            (E-, E+) .......................................... 264
     11.3.4 At energies below the crossing points: (-∞, E-) ... 265
     11.3.5 Numerical examples ................................ 265

Chapter 12. New Mechanism of Molecular Switching .............. 269
12.1 Basic Idea ............................................... 269
12.2 One-Dimensional Model .................................... 270
     12.2.1 Transmission in a pure system ..................... 270
     12.2.2 Transmission in a system with impurities .......... 278
12.3 Two-Dimensional Model .................................... 287
     12.3.1 Two-dimensional constriction model ................ 287
     12.3.2 Wave functions, matching, and transmission
            coefficient ....................................... 291
12.4 Numerical Examples ....................................... 295

Chapter 13. Control of Nonadiabatic Processes by an External
Field ......................................................... 303
13.1 Floquet Theorem and Nonadiabatic Transitions in a 
     Quasi-Periodic Field ..................................... 304
     13.1.1 Floquet theorem and dressed state representation .. 304
     13.1.2 Nonadiabatic transitions in a quasi-periodic
            field ............................................. 306
13.2 Control of Nonadiabatic Transitions by Periodically
     Sweeping External Field .................................. 308
     13.2.1 Basic ideas ....................................... 308
     13.2.2 Basic theory of periodic sweeping ................. 313
13.3 Semiclassical Guided Optimal Control Theory .............. 323
13.4 Laser Control of Photodissociation with Use of the
     Complete Reflection Phenomenon ........................... 328

Chapter 14. Comprehension of Nonadiabatic Chemical Dynamics ... 333
14.1 Chemical Reaction Dynamics ............................... 333
     14.1.1 Three-dimensional chemical reactions .............. 333
     14.1.2 Nonadiabatic chemical reactions ................... 341
14.2 Photo-Induced Dynamics ................................... 350
     14.2.1 Photo-isomerization of retinal .................... 350
     14.2.2 Photo-absorption spectrum ......................... 355
14.3 Electron Transfer ........................................ 358
     14.3.1 Normal case ....................................... 358
     14.3.2 Inverted case ..................................... 362

Chapter 15. Control of Chemical Dynamics ...................... 365
15.1 Efficient Excitation/De-Excitation by Periodic Chirping .. 365
     15.1.1 Spin tunneling by magnetic field .................. 365
     15.1.2 Vibrational and tunneling transitions controlled
            by laser .......................................... 368
     15.1.3 Selective and complete excitation of energy
            levels ............................................ 380
     15.1.4 Pump and dump of wave packet ...................... 390
15.2 Control of Wave Packet Motion and Transition at Conical
     Intersection ............................................. 399
     15.2.1 Vibrational isomerization of HCN .................. 399
     15.2.2 Giving a pre-determined directed momentum to
            wave packet ....................................... 402
     15.2.3 Selective Photo-dissociation of OHC1 intoO+HCl .... 405
15.3 Selective Photo-Dissociation with Use of the Complete
     Reflection Phenomenon .................................... 407
15.4 Control of 7r-Electron Rotation and Its Coupling
     to Molecular Vibration ................................... 423

Chapter 16. Manifestation of Molecular Functions .............. 427
16.1 Molecular Switching ...................................... 428
16.2 Hydrogen Transmission Through Carbon Ring ................ 436
16.3 Photo-Chromic Conversion of Cyclohexadiene to
     Hexatriene ............................................... 442
16.4 Molecular Motors ......................................... 449

Chapter 17. Conclusions: Future Perspectives .................. 459

Appendix A. Final Recommended Formulas of the Zhu-Nakamura
Theory for General Time-Independent Two-Channel Problem ....... 463
A.l  Landau-Zener Type (see Fig. A.l) ......................... 463
     A.l.l  E ≥ EX ............................................ 465
     A.1.2  E ≤ EX ............................................ 466
     A.1.3  Definitions of σzn, δzn and δψ .................... 467
     A.1.4  Total scattering matrix ........................... 468
A.2  Nonadiabatic Tunneling Type (see Fig. A.2) ............... 469
     A.2.1  E ≥ Eb ............................................ 471
     A.2.2  Еb ≥ E ≥ Et ....................................... 472
     A.2.3  E ≤ Et ............................................ 473

Appendix B. Time-Dependent Version of the Zhu-Nakamura 
Theory ........................................................ 475

References .................................................... 477
Index ......................................................... 495


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:54 2019. Размер: 15,578 bytes.
Посещение N 1788 c 30.07.2013