Mueller J. Linear and nonlinear inverse problems with practical applications (Philadelphia, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMueller J. Linear and nonlinear inverse problems with practical applications / J.L.Mueller, S.Siltanen. - Philadelphia: Society for Industrial and Applied Mathematics, 2012. - xiii, 351 p.: ill. - (Computational science and engineering). - Bibliogr.: p.311-347. - Ind.: p.349-351. - ISBN 978-1-611972-33-7
 

Оглавление / Contents
 
Preface ........................................................ xi

I  Linear Inverse Problems ...................................... 1

1  Introduction ................................................. 3
2  Naive reconstructions and inverse crimes ..................... 7
   2.1  Convolution ............................................. 7
   2.2  Heat propagation ....................................... 14
   2.3  Tomographic X-ray projection data ...................... 21
3  Ill-posedness in inverse problems ........................... 35
   3.1  Forward map and Hadamard's conditions .................. 35
   3.2  Ill-posedness of the backward heat equation ............ 36
   3.3  Ill-posedness in the continuous case ................... 40
   3.4  Regularized inversion .................................. 47
   3.5  The SVD for matrices ................................... 49
   3.6  SVD for the guiding examples ........................... 51
4  Truncated singular value decomposition ...................... 53
   4.1  Minimum norm solution .................................. 53
   4.2  Truncated SVD .......................................... 55
   4.3  Measuring the quality of reconstructions ............... 56
   4.4  TSVD for the guiding examples .......................... 57
5  Tikhonov regularization ..................................... 63
   5.1  Classical Tikhonov regularization ...................... 63
   5.2  Normal equations and stacked form ...................... 67
   5.3  Generalized Tikhonov regularization .................... 69
   5.4  Choosing the regularization parameter .................. 72
   5.5  Large-scale implementation ............................. 78
6  Total variation regularization .............................. 83
   6.1  What is total variation? ............................... 83
   6.2  Quadratic programming .................................. 86
   6.3  Sparsity-based parameter choice ........................ 88
   6.4  Large-scale implementation ............................. 90
7  Besov space regularization using wavelets ................... 95
   7.1  An introduction to wavelets ............................ 95
   7.2  Besov spaces and wavelets .............................. 98
   7.3  Using В111 regularization to promote sparsity .......... 99
8  Discretization-invariance .................................. 103
   8.1  Tikhonov regularization and discretizations ........... 104
   8.2  Total variation regularization and discretizations .... 107
   8.3  Besov norm regularization and discretizations ......... 108
9  Practical X-ray tomography with limited data ............... 111
   9.1  Sparse full-angle tomography .......................... 114
   9.2  Limited-angle tomography .............................. 119
   9.3  Low-dose three-dimensional dental X-ray imaging ....... 122
10 Projects ................................................... 131
   10.1 Image deblurring ...................................... 132
   10.2 Inversion of the Laplace transform .................... 133
   10.3 Backward parabolic problem ............................ 133

II Nonlinear Inverse Problems ................................. 137

11 Nonlinear inversion ........................................ 139
   11.1 Analysis of nonlinear Ill-posedness ................... 140
   11.2 Nonlinear regularization .............................. 143
   11.3 Computational inversion ............................... 144
   11.4 Examples of nonlinear inverse problems ................ 145
12 Electrical impedance tomography ............................ 159
   12.1 Applications of EIT ................................... 160
   12.2 Derivation from Maxwell's equations ................... 162
   12.3 Continuum model boundary measurements ................. 163
   12.4 Nonlinearity of EIT ................................... 165
   12.5 Ill-posedness of EIT .................................. 165
   12.6 Electrode models ...................................... 170
   12.7 Current patterns and distinguishability ............... 173
   12.8 Further reading ....................................... 180
13 Simulation of noisy EIT data ............................... 185
   13.1 Eigenvalue data for symmetric σ ....................... 185
   13.2 Continuum model data and FEM .......................... 187
   13.3 Complete electrode model and FEM ...................... 191
   13.4 Adding noise to EIT data matrices ..................... 197
14 Complex geometrical optics solutions ....................... 199
   14.1 Calderön's pioneering work ............................ 199
   14.2 The fig.5 operator and its kin ............................ 203
   14.3 CGO solutions for the Schrцdinger equation ............ 205
   14.4 CGO solutions for the Beltrami equation ............... 215
15 A regularized D-bar method for direct EIT .................. 223
   15.1 Reconstruction with infinite-precision data ........... 224
   15.2 Regularization via nonlinear low-pass filtering ....... 231
   15.3 Numerical solution of the boundary integral equation .. 234
   15.4 Numerical solution of the D-bar equation .............. 237
   15.5 Regularized reconstructions ........................... 242
16 Other direct solution methods for EIT ...................... 249
   16.1 D-bar methods with approximate scattering transforms .. 249
   16.2 Calderón's method ..................................... 259
   16.3 The Astala-Päivärinta method .......................... 266
   16.4 The enclosure method of Ikehata ....................... 277
17 Projects ................................................... 281
   17.1 Enclosure method for EIT .............................. 281
   17.2 The D-bar method with Born approximation .............. 283
   17.3 Calderцn's method ..................................... 285
   17.4 Inverse obstacle scattering ........................... 286
A  Banach spaces and Hilbert spaces ........................... 291
В  Mappings and compact operators ............................. 293
С  Fourier transform and Sobolev spaces ....................... 297
   С.1  Sobolev spaces on domains Ω fig.4 fig.2 ....................... 297
   C.2  Fourier series and spaces fig.3s(∂Ω) ...................... 301
   C.3  Traces of functions in fig.3m(Ω) .......................... 306
D  Iterative solution of linear equations ..................... 307
Bibliography .................................................. 311
Index ......................................................... 349


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:54 2019. Размер: 10,709 bytes.
Посещение N 1648 c 30.07.2013