Preface to the Third Edition .................................. vii
Preface to the Second Edition .................................. ix
Preface to the First Edition ................................... xi
1 Introduction ................................................. 1
1.1 Radiation and Particle Interactions ..................... 3
1.2 Particles and Types of Interaction ...................... 5
1.2.1 Quarks and Leptons ............................... 6
1.3 Relativistic Kinematics ................................. 7
1.3.1 The Two-Body Scattering ......................... 10
1.3.2 The Invariant Mass .............................. 13
1.3.3 Relativistic Doppler Effect ..................... 18
1.4 Atomic Mass, Weight, Standard Weight and Mass Unit ..... 23
1.5 Cross Section and Differential Cross Section ........... 24
1.6 Coulomb Single-Scattering Cross Section ................ 26
1.6.1 Rutherford's Formula and Average Energy
Transferred ..................................... 30
1.7 Detectors and Large Experimental Apparata .............. 33
1.7.1 Trigger, Monitoring, Data Acquisition, Slow
Control ......................................... 35
1.7.2 General Features of Particle Detectors and
Detection Media ................................. 36
1.7.3 Radiation Environments and Silicon Devices ...... 42
2 Electromagnetic Interaction of Radiation in Matter .......... 45
2.1 Passage of Ionizing Particles through Matter ........... 46
2.1.1 The Collision Energy-Loss of Massive Charged
Particles ....................................... 46
2.1.2 Energy-Loss Fluctuations ........................ 68
2.1.3 Range of Heavy Charged Particles and Bragg
Curve ........................................... 84
2.1.4 Heavy Ions ...................................... 91
2.1.5 Ionization Yield in Gas Media .................. 106
2.1.6 Passage of Electrons and Positrons through
Matter ......................................... 108
2.1.7 Radiation Energy-Loss by Electrons and
Positrons ...................................... 117
2.2 Multiple and Extended Volume Coulomb Interactions ... 151
2.2.1 The Multiple Coulomb Scattering ................ 151
2.2.2 Emission of Cerenkov Radiation ................. 156
2.2.3 Emission of Transition Radiation ............... 162
2.3 Photon Interaction and Absorption in Matter ........... 168
2.3.1 The Photoelectric Effect ....................... 170
2.3.2 The Compton Scattering ......................... 177
2.3.3 Pair Production ................................ 204
2.3.4 Photonuclear Scattering, Absorption and
Production ..................................... 218
2.3.5 Attenuation Coefficients, Dosimetric and
Radiobiological Quantities ..................... 223
2.4 Electromagnetic Cascades in Matter .................... 237
2.4.1 Phenomenology and Natural Units of
Electromagnetic Cascades ....................... 238
2.4.2 Propagation and Diffusion of Electromagnetic
Cascades in Matter ............................. 240
2.4.3 Shower Propagation and Diffusion in Complex
Absorbers ...................................... 255
3 Nuclear Interactions in Matter ............................. 257
3.1 General Properties of the Nucleus ..................... 257
3.1.1 Radius of Nuclei and the Liquid Droplet
Model .......................................... 260
3.1.2 Form Factor and Charge Density of Nuclei ....... 263
3.1.3 Angular and Magnetic Moment, Shape of Nuclei ... 266
3.1.4 Stable and Unstable Nuclei ..................... 267
3.1.5 Fermi Gas Model and Nuclear Shell Model ........ 273
3.2 Phenomenology of Interactions on Nuclei at High
Energy ................................................ 279
3.2.1 Energy and A-Dependence of Cross Sections ...... 280
3.2.2 Coherent and Incoherent Interactions on
Nuclei ......................................... 281
3.2.3 Multiplicity of Charged Particles and
Angular-Distribution of Secondaries ............ 293
3.2.4 Emission of Heavy Prongs ....................... 302
3.2.5 The Nuclear Spallation Process ................. 305
3.2.6 Nuclear Temperature and Evaporation ............ 308
3.3 Hadronie Shower Development and Propagation in
Matter ................................................ 312
3.3.1 Phenomenology of the Hadronie Cascade in
Matter ......................................... 313
3.3.2 Natural Units in the Hadronic Cascade .......... 316
3.3.3 Longitudinal and Lateral Hadronic Development .. 318
4 Radiation Environments and Damage in Silicon
Semiconductors ............................................. 325
4.1 Radiation Environments ................................ 327
4.1.1 High-Luminosity Machines Environments for
Particle Physics Experiments ................... 327
4.1.2 Space Radiation Environment .................... 335
4.1.3 Neutron Spectral Fluence in Nuclear Reactor
Environment .................................... 393
4.2 Relevant Processes of Energy Deposition and Damage .... 396
4.2.1 NIEL and Displacement Damage ................... 397
4.2.2 Radiation Induced Defects ...................... 424
4.2.3 Ionization Energy-Loss and NIEL Processes ...... 431
4.3 Radiation Induced Defects and Modification of
Silicon Bulk and p — n Junction Properties ............ 437
4.3.1 Displacement Damage Effect on Minority
Carrier Lifetime ............................... 438
4.3.2 Carrier Generation and Leakage Current ......... 440
4.3.3 Diode Structure and Rectification Down to
Cryogenic Temperature ......................... 442
4.3.4 Complex Impedance of Junctions and Cryogenic
Temperatures ................................... 454
4.3.5 Resistivity, Hall Coefficient and Hall
Mobility at Large Displacement Damage .......... 461
4.3.6 AFM Structure Investigation in Irradiated
Devices ........................................ 472
5 Scintillating Media and Scintillator Detectors ............. 475
5.1 Scintillators ......................................... 475
5.1.1 Organic Scintillators .......................... 476
5.1.2 Inorganic Scintillators ........................ 479
5.2 The Cerenkov Detectors ................................ 482
5.2.1 Threshold Cerenkov Detectors ................... 485
5.2.2 Differential Cerenkov Detectors ................ 489
5.2.3 Ring Imaging Cerenkov (RICH) Detectors ......... 490
5.3 Wavelength Shifters ................................... 491
5.4 Transition Radiation Detectors (TRD) .................. 493
5.5 Scintillating Fibers .................................. 495
5.6 Detection of the Scintillation Light .................. 498
5.7 Applications in Calorimetry ........................... 503
5.8 Application in Time-of-Flight (ToF) Technique ......... 504
6 Solid State Detectors ...................................... 507
6.1 Basic Principles of Operation ......................... 508
6.1.1 Unpolarized p - n Junction ..................... 510
6.1.2 Polarized p - n Junction ....................... 513
6.1.3 Capacitance .................................... 516
6.1.4 Charge Collection Measurements ................. 517
6.1.5 Charge Transport in Silicon Diodes ............. 518
6.1.6 Leakage or Reverse Current ..................... 529
6.1.7 Noise Characterization of Silicon Detectors .... 531
6.2 Charge Collection Efficiency and Hecht Equation ....... 533
6.3 Spectroscopic Characteristics of Standard Planar
Detectors ............................................. 538
6.3.1 Energy Resolution of Standard Planar
Detectors ...................................... 541
6.4 Microstrip Detectors .................................. 542
6.5 Pixel Detector Devices ................................ 548
6.5.1 The MediPix-Type Detecting Device .............. 549
6.5.2 Examples of Application: Particle Physics ...... 552
6.6 Photovoltaic and Solar Cells .......................... 559
6.7 Neutrons Detection with Silicon Detectors ............. 564
6.8 Radiation Effects on Silicon Semiconductor Detectors .. 578
6.8.1 MESA Radiation Detectors ....................... 578
6.8.2 Results of Irradiation Tests of Planar MESA
Detectors ...................................... 582
6.8.3 Irradiation with Low-Energy Protons in High-
Resistivity Silicon Detectors and NIEL ......... 587
7 Displacement Damage and Particle Interactions in Silicon
Devices .................................................... 595
7.1 Displacement Damage in Irradiated Bipolar
Transistors ........................................... 597
7.1.1 Transit Time of Minority Carriers Across the
Base ........................................... 601
7.1.2 Gain Degradation of Bipolar Transistors and
Messenger-Spratt Equation ...................... 602
7.1.3 Surface and Total Dose Effects on the Gain
Degradation of Bipolar Transistors ............. 606
7.1.4 Generalized Messenger-Spratt Equation for
Gain Degradation of Bipolar Transistors ........ 608
7.1.5 Transistor Gain and Self-Annealing ............. 611
7.1.6 Radiation Effects on Low-Resistivity Base
Spreading-Resistance ............................ 612
7.2 Single Event Effects .................................. 614
7.2.1 Classification of SEE .......................... 617
7.2.2 SEE in Spatial Radiation Environment ........... 618
7.2.3 SEE in Atmospheric Radiation Environment ....... 620
7.2.4 SEE in Terrestrial Radiation Environment ....... 621
7.2.5 SEE Produced by Radioactive Sources ............ 621
7.2.6 SEE in Accelerator Radiation Environment ....... 624
7.2.7 SEE Generation Mechanisms ...................... 625
7.2.8 SEE Cross Section .............................. 634
7.2.9 SEE Mitigation ................................. 641
8 Gas Filled Chambers ........................................ 643
8.1 The Ionization Chamber ................................ 643
8.2 Recombination Effects ................................. 646
8.2.1 Germinate or Initial Recombination ............. 647
8.2.2 Columnar Recombination ......................... 647
8.2.3 The Box Model .................................. 648
8.2.4 Recombination with Impurities .................. 649
8.3 Example of Ionization Chamber Application: The
a-Cell ................................................ 652
8.3.1 Thea-Cell ...................................... 652
8.3.2 Charge Measurement with the a-Cell ............. 655
8.3.3 Examples of Pollution Tests Using the a-Cell ... 660
8.4 Proportional Counters ................................. 662
8.4.1 Avalanche Multiplication ....................... 662
8.5 Proportional Counters: Cylindrical Coaxial Wire
Chamber ............................................... 665
8.6 Multiwire Proportional Chambers (MWPC) ................ 672
8.7 The Geiger-Mueller Counter ............................ 674
9 Principles of Particle Energy Determination ................ 677
9.1 Experimental Physics and Calorimetry .................. 677
9.1.1 Natural Units in Shower Propagation ............ 681
9.2 Electromagnetic Sampling Calorimetry .................. 681
9.2.1 Electromagnetic Calorimeter Response ........... 681
9.2.2 The e/mip Ratio ................................ 684
9.2.3 e/mip Reduction in High-Z Sampling
Calorimeters: The Local Hardening Effect ....... 692
9.3 Principles of Calorimetry with Complex Absorbers ...... 696
9.3.1 The Filtering Effect and How to Tune the
e/mip Ratio .................................... 698
9.3.2 e/mip Reduction by Combining Local Hardening
and Filtering Effects .......................... 703
9.4 Energy Resolution in Sampling Electromagnetic
Calorimetry ........................................... 705
9.4.1 Visible Energy Fluctuations .................... 705
9.4.2 Effect of Limited Containment on Energy
Resolution ..................................... 715
9.5 Homogeneous Calorimeters .............................. 719
9.5.1 General Considerations ......................... 719
9.5.2 Energy Measurement ............................. 722
9.6 Position Measurement .................................. 729
9.7 Electron Hadron Separation ............................ 733
9.8 Hadronie Calorimetry .................................. 734
9.8.1 Intrinsic Properties of the Hadronie
Calorimeter .................................... 734
9.9 Methods to Achieve the Compensation Condition ......... 743
9.9.1 Compensation Condition by Detecting Neutron
Energy ......................................... 744
9.9.2 Compensation Condition by Tuning the e/mip
Ratio .......................................... 750
9.10 Compensation and Hadronie Energy Resolution ........... 760
9.10.1 Non-Compensation Effects and the ø(е/π) Term .. 766
9.10.2 Determination of Effective Intrinsic
Resolutions .................................... 768
9.10.3 Effect of Visible-Energy Losses on
Calorimeter Energy Resolution .................. 770
9.11 Calorimetry at Very High Energy ....................... 771
9.11.1 General Considerations ......................... 771
9.11.2 Air Showers (AS) and Extensive Air Showers
(EAS) .......................................... 775
9.11.3 Electromagnetic Air Showers .................... 778
9.11.4 Hadronie Extensive Air Showers ................. 781
9.11.5 The Muon Component of Extensive Air Showers .... 783
10 Superheated Droplet (Bubble) Detectors and CDM Search ...... 785
10.1 The Superheated Droplet Detectors and their
Operation ............................................. 788
10.1.1 Neutron Response Measurement ................... 792
10.1.2 Alpha-Particle Response Measurement ............ 796
10.1.3 Radon Detection ................................ 799
10.1.4 Spontaneous Nucleation ......................... 800
10.1.5 Signal Measurement with Piezoelectric Sensors .. 801
10.2 Search of Cold Dark Matter (CDM) ...................... 802
10.2.1 Calculation of the Neutralino-Nucleon
Exclusion Limits .............................. 803
10.2.2 The PICASSO Experiment, an Example ............ 817
10.2.3 Status of Dark Matter Searches ................ 819
10.3 Double Beta Decay .................................... 821
11 Medical Physics Applications .............................. 827
11.1 Single Photon Emission Computed Tomography (SPECT) ... 829
11.2 Positron Emission Tomography (PET) ................... 841
11.3 Magnetic Resonance Imaging (MPJ) ..................... 845
11.3.1 Physical Basis of MRI ......................... 845
11.3.2 Forming an Image .............................. 848
11.4 X-Ray Medical Imaging with MediPix Devices ........... 851
11.4.1 The Contrast .................................. 852
11.4.2 The Modulation Transfer Function .............. 852
11.4.3 The Detective Quantum Efficiency .............. 853
Appendix A General Properties and Constants ................. 857
A.l Physical Constants ................................... 858
A.2 Periodic Table of Elements ........................... 862
A.3 Conversion Factors ................................... 864
A.4 Electronic Structure of the Elements ................. 876
A.5 Isotopic Abundances .................................. 879
A.6 Commonly Used Radioactive Sources .................... 881
A.7 Free Electron Fermi Gas .............................. 882
A.8 Gamma-Ray Energy and Intensity Standards ............. 885
Appendix В Mathematics and Statistics ....................... 889
B.l Probability and Statistics for Detection Systems ..... 890
B.2 Table of Integrals ................................... 901
Bibliography ................................................. 903
Index ........................................................ 967
|