Kuo K.K. Applications of turbulent and multi-phase combustion (Hoboken, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKuo K.K. Applications of turbulent and multi-phase combustion / K.K.Kuo, R.Acharya. - Hoboken: Wiley, 2012. - xxii, 576 p.: ill. - Bibliogr.: p.544-569. - Ind.: p.571-576. - ISBN 978-1-118-12756-8
 

Оглавление / Contents
 
Preface ....................................................... xvii
1  Solid Propellants and Their Combustion Characteristics ........ 1
   1.1  Background of Solid Propellant Combustion ................ 4
        1.1.1  Definition of Solid Propellants ................... 4
        1.1.2  Desirable Characteristics of Solid Propellants .... 4
        1.1.3  Calculation of Oxygen Balance ..................... 5
        1.1.4  Homogeneous Propellants ........................... 6
        1.1.5  Heterogeneous Propellants (or Composite
               Propellants) ...................................... 7
        1.1.6  Major Types of Ingredients in Solid
               Propellants ....................................... 8
        1.1.7  Applications of Solid Propellants ................ 16
        1.1.8  Material Characterization of Propellants ......... 16
        1.1.9  Thermal Profile in a Burning Solid Propellant .... 18
   1.2 Solid-Propellant Rocket and Gun Performance Parameters ... 43
        1.2.1  Performance Parameters of a Solid Rocket Motor ... 44
        1.2.2  Performance Parameters of Solid-Propellant Gun
               Systems .......................................... 61
2  Thermal Decomposition and Combustion of Nitramines ........... 72
   2.1  Thermophysical Properties of Selected Nitramines ........ 76
   2.2  Polymorphic Forms of Nitramines ......................... 78
        2.2.1  Polymorphic Forms of HMX ......................... 80
        2.2.2  Polymorphic Forms of RDX ......................... 82
   2.3  Thermal Decomposition of RDX ............................ 88
        2.3.1  Explanation of Opposite Trends on α- and β-KDX
               Decomposition with Increasing Pressure ........... 90
        2.3.2  Thermal Decomposition Mechanisms of RDX .......... 92
        2.3.3  Formation of Foam Layer Near RDX Burning
               Surface ......................................... 106
   2.4  Gas-Phase Reactions of RDX ............................. 109
        2.4.1  Development of Gas-Phase Reaction Mechanism for
               RDX Combustion .................................. 111
   2.5  Modeling of RDX Monopropellant Combustion with
        Surface Reactions ...................................... 125
        2.5.1  Processes in Foam-Layer Region ........ 126
        2.5.2  Reactions Considered in the Foam Layer .......... 128
        2.5.3  Evaporation and Condensation Consideration
               for RDX ......................................... 128
        2.5.4  Boundary Conditions ............................. 130
        2.5.5  Numerical Methods Used for RDX Combustion
               Model with Foam Layer ........................... 131
        2.5.6  Predicted Flame Structure ....................... 132
3  Burning Behavior of Homogeneous Solid Propellants ........... 143
   3.1  Common Ingredients in Homogeneous Propellants .......... 147
   3.2  Combustion Wave Structure of a Double-Base Propellant .. 148
   3.3  Burning Rate Behavior of a Double-Base Propellant ...... 149
   3.4  Burning Rate Behavior of Catalyzed Nitrate-Ester
        Propellants ............................................ 155
   3.5  Thermal Wave Structure and Pyrolysis Law of
        Homogeneous Propellants ................................ 158
        3.5.1 Dark Zone Residence Time Correlation ............. 166
   3.6  Modeling and Prediction of Homogeneous Propellant
        Combustion Behavior .................................... 167
        3.6.1 Multi-Ingredient Model of Miller and Anderson .... 171
   3.7  Transient Burning Characterization of Homogeneous
        Solid Propellant ....................................... 187
        3.7.1  What is Dynamic Burning? ........................ 188
        3.7.2  Theoretical Models for Dynamic Burning .......... 190
4  Chemically Reacting Boundary-Layer Flows .................... 209
   4.1  Introduction ........................................... 210
        4.1.1  Applications of Reacting Boundary-Layer Flows ... 211
        4.1.2  High-Temperature Experimental Facilities Used
               in Investigation ................................ 211
        4.1.3  Theoretical Approaches and Boundary-Layer Flow
               Classifications ................................. 212
        4.1.4  Historical Survey ............................... 212
   4.2  Governing Equations for Two-Dimensional Reacting
        Boundary-Layer Flows ................................... 216
   4.3  Boundary Conditions .................................... 221
   4.4  Chemical Kinetics ...................................... 224
        4.4.1  Homogeneous Chemical Reactions .................. 224
        4.4.2  Heterogeneous Chemical Reactions ................ 226
   4.5  Laminar Boundary-Layer Flows with Surface Reactions .... 229
        4.5.1  Governing Equations and Boundary Conditions ..... 229
        4.5.2  Transformation to (ξ, η) Coordinates ............ 229
        4.5.3  Conditions for Decoupling of Governing
               Equations and Self-Similar Solutions ............ 232
        4.5.4  Damkцhler Number for Surface Reactions .......... 233
        4.5.5  Surface Combustion of Graphite Near the
               Stagnation Region ............................... 234
   4.6  Laminar Boundary-Layer Flows With Gas-Phase
        Reactions .............................................. 239
        4.6.1  Governing Equations and Coordinate
               Transformation .................................. 239
        4.6.2  Damkцhler Number for Gas-Phase Reactions ........ 240
        4.6.3  Extension to Axisymmetric Cases ................. 242
   4.7  Turbulent Boundary-Layer Flows with Chemical
        Reactions .............................................. 243
        4.7.1  Introduction .................................... 243
        4.7.2  Boundary-Layer Integral Matrix Procedure of
               Evans ........................................... 243
        4.7.3  Marching-Integration Procedure of Patankar and
               Spalding ........................................ 257
        4.7.4  Metal Erosion by Hot Reactive Gases ............. 272
        4.7.5  Thermochemical Erosion of Graphite Nozzles of
               Solid Rocket Motors ............................. 281
        4.7.6  Turbulent Wall Fires ............................ 316
5  Ignition and Combustion of Single Energetic Solid
   Particles ................................................... 330
   5.1  Why Energetic Particles Are Attractive for Combustion
        Enhancement in Propulsion .............................. 335
   5.2  Metal Combustion Classification ........................ 336
   5.3  Metal Particle Combustion Regimes ...................... 341
   5.4  Ignition of Boron Particles ............................ 344
   5.5  Experimental Studies ................................... 351
        5.5.1  Gasification of Boron Oxides .................... 352
        5.5.2  Chemical Kinetics Measurement ................... 353
        5.5.3  Boron Ignition Combustion in a Controlled Hot
               Gas Environment ................................. 354
   5.6  Theoretical Studies of Boron Ignition and Combustion ... 362
        5.6.1  First-Stage Combustion Models ................... 362
        5.6.2  Second-Stage Combustion Models .................. 365
        5.6.3  Chemical Kinetic Mechanisms ..................... 365
        5.6.4  Methods for Enhancement of Boron Ignition ....... 367
        5.6.5  Verification of Diffusion Mechanism of Boron
               Particle Combustion ............................. 369
        5.6.6  Chemical Identification of the Boron Oxide
               Layer ........................................... 371
   5.7  Theoretical Model Development of Boron Particle
        Combustion ............................................. 372
        5.7.1  First-Stage Combustion Model .................... 372
        5.7.2  Second-Stage Combustion Model ................... 377
        5.7.3  Comparison of Predicted and Measured
               Combustion Times ................................ 381
   5.8  Ignition and Combustion of Boron Particles in
        Fluorine-Containing Environments ....................... 384
        5.8.1  Multidiffusion Flat-Flame Burner ................ 385
        5.8.2  Test Conditions ................................. 387
        5.8.3  Experimental Results and Discussions ............ 388
        5.8.4  Surface Reaction of (BO)n with HF(g) ............ 393
        5.8.5  Surface Reaction of (BO)n with F(g) ............. 394
        5.8.6  Governing Equations During the First-Stage
               Combustion of Boron Particles ................... 395
        5.8.7  Model for the "Clean" Boron Consumption
               Process (Second-Stage Combustion) ............... 396
        5.8.8  Numerical Solution .............................. 403
   5.9 Combustion of a Single Aluminum Particle ................ 410
        5.9.1  Background ...................................... 413
        5.9.2  Physical Model .................................. 414
        5.9.3  Aluminum-Combustion Mechanism ................... 417
        5.9.4  Condensation Aspect of Model of Beckstead et
               al. (2005) ...................................... 419
        5.9.5  General Mathematical Model ...................... 422
        5.9.6  Boundary Conditions ............................. 424
        5.9.7  Dn Law in Aluminum Combustion ................... 429
   5.10 Ignition of Aluminum Particle in a Controlled
        Postflame Zone ......................................... 437
   5.11 Physical Concepts of Aluminum Agglomerate Formation .... 439
        5.11.1 Evolution Process of Condensed-Phase
               Combustion Products ............................. 440
   5.12 Combustion Behavior for Fine and Ultrafine Aluminum
        Particles .............................................. 443
        5.12.1 10 μm Aluminum Particle - Early Transitional
               Structure ....................................... 444
        5.12.2 100 nm Aluminum Particle - Late Transitional
               Structure ....................................... 446
   5.13 Potential Use of Energetic Nanosize Powders for
        Combustion and Rocket Propulsion ....................... 447
   Chapter Problems ............................................ 452
   Project N 1 ................................................. 452
   Project N 2 ................................................. 454
6  Combustion of Solid Particles in Multiphase Flows ........... 456
   6.1  Void Fraction and Specific Particle Surface Area ....... 462
   6.2  Mathematical Formulation ............................... 463
        6.2.1  Formulation of the Heat Equation for a Single
               Particle ........................................ 469
   6.3  Method of Characteristics Formulation .................. 472
        6.3.1  Linearization of the Characteristic Equations ... 476
   6.4  Ignition Cartridge Results ............................. 477
   6.5  Governing Equations for the Mortar Tube ................ 484
        6.5.1  Initial Conditions .............................. 488
        6.5.2  Boundary Conditions ............................. 488
        6.5.3  Numerical Methods for Mortar Region Model ....... 490
   6.6  Predictions of Mortar Performance and Model
        Validation ............................................. 491
   6.7  Approximate Riemann Solver: Roe-Pike Method ............ 496
   6.8  Roe's Method ........................................... 499
   6.9  Roe-Pike Method ........................................ 501
   6.10 Entropy Condition and Entropy Fix ...................... 502
   6.11 Flux Limiter ........................................... 503
   6.12 Higher Order Correction ................................ 504
   6.13 Three-Dimensional Wave Propagation ..................... 504

Appendix A: Useful Vector and Tensor Operations ................ 507
Appendix B: Constants and Conversion Factors Often Used in
            Combustion ......................................... 534
Appendix C: Naming of Hydrocarbons ............................. 538
Appendix D: Particle Size-U.S. Sieve Size and Tyler Screen
            Mesh Equivalents ................................... 541
Bibliography ................................................... 544
Index .......................................................... 571


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:54 2019. Размер: 16,452 bytes.
Посещение N 1865 c 30.07.2013