Preface ....................................................... xvii
1 Solid Propellants and Their Combustion Characteristics ........ 1
1.1 Background of Solid Propellant Combustion ................ 4
1.1.1 Definition of Solid Propellants ................... 4
1.1.2 Desirable Characteristics of Solid Propellants .... 4
1.1.3 Calculation of Oxygen Balance ..................... 5
1.1.4 Homogeneous Propellants ........................... 6
1.1.5 Heterogeneous Propellants (or Composite
Propellants) ...................................... 7
1.1.6 Major Types of Ingredients in Solid
Propellants ....................................... 8
1.1.7 Applications of Solid Propellants ................ 16
1.1.8 Material Characterization of Propellants ......... 16
1.1.9 Thermal Profile in a Burning Solid Propellant .... 18
1.2 Solid-Propellant Rocket and Gun Performance Parameters ... 43
1.2.1 Performance Parameters of a Solid Rocket Motor ... 44
1.2.2 Performance Parameters of Solid-Propellant Gun
Systems .......................................... 61
2 Thermal Decomposition and Combustion of Nitramines ........... 72
2.1 Thermophysical Properties of Selected Nitramines ........ 76
2.2 Polymorphic Forms of Nitramines ......................... 78
2.2.1 Polymorphic Forms of HMX ......................... 80
2.2.2 Polymorphic Forms of RDX ......................... 82
2.3 Thermal Decomposition of RDX ............................ 88
2.3.1 Explanation of Opposite Trends on α- and β-KDX
Decomposition with Increasing Pressure ........... 90
2.3.2 Thermal Decomposition Mechanisms of RDX .......... 92
2.3.3 Formation of Foam Layer Near RDX Burning
Surface ......................................... 106
2.4 Gas-Phase Reactions of RDX ............................. 109
2.4.1 Development of Gas-Phase Reaction Mechanism for
RDX Combustion .................................. 111
2.5 Modeling of RDX Monopropellant Combustion with
Surface Reactions ...................................... 125
2.5.1 Processes in Foam-Layer Region ........ 126
2.5.2 Reactions Considered in the Foam Layer .......... 128
2.5.3 Evaporation and Condensation Consideration
for RDX ......................................... 128
2.5.4 Boundary Conditions ............................. 130
2.5.5 Numerical Methods Used for RDX Combustion
Model with Foam Layer ........................... 131
2.5.6 Predicted Flame Structure ....................... 132
3 Burning Behavior of Homogeneous Solid Propellants ........... 143
3.1 Common Ingredients in Homogeneous Propellants .......... 147
3.2 Combustion Wave Structure of a Double-Base Propellant .. 148
3.3 Burning Rate Behavior of a Double-Base Propellant ...... 149
3.4 Burning Rate Behavior of Catalyzed Nitrate-Ester
Propellants ............................................ 155
3.5 Thermal Wave Structure and Pyrolysis Law of
Homogeneous Propellants ................................ 158
3.5.1 Dark Zone Residence Time Correlation ............. 166
3.6 Modeling and Prediction of Homogeneous Propellant
Combustion Behavior .................................... 167
3.6.1 Multi-Ingredient Model of Miller and Anderson .... 171
3.7 Transient Burning Characterization of Homogeneous
Solid Propellant ....................................... 187
3.7.1 What is Dynamic Burning? ........................ 188
3.7.2 Theoretical Models for Dynamic Burning .......... 190
4 Chemically Reacting Boundary-Layer Flows .................... 209
4.1 Introduction ........................................... 210
4.1.1 Applications of Reacting Boundary-Layer Flows ... 211
4.1.2 High-Temperature Experimental Facilities Used
in Investigation ................................ 211
4.1.3 Theoretical Approaches and Boundary-Layer Flow
Classifications ................................. 212
4.1.4 Historical Survey ............................... 212
4.2 Governing Equations for Two-Dimensional Reacting
Boundary-Layer Flows ................................... 216
4.3 Boundary Conditions .................................... 221
4.4 Chemical Kinetics ...................................... 224
4.4.1 Homogeneous Chemical Reactions .................. 224
4.4.2 Heterogeneous Chemical Reactions ................ 226
4.5 Laminar Boundary-Layer Flows with Surface Reactions .... 229
4.5.1 Governing Equations and Boundary Conditions ..... 229
4.5.2 Transformation to (ξ, η) Coordinates ............ 229
4.5.3 Conditions for Decoupling of Governing
Equations and Self-Similar Solutions ............ 232
4.5.4 Damkцhler Number for Surface Reactions .......... 233
4.5.5 Surface Combustion of Graphite Near the
Stagnation Region ............................... 234
4.6 Laminar Boundary-Layer Flows With Gas-Phase
Reactions .............................................. 239
4.6.1 Governing Equations and Coordinate
Transformation .................................. 239
4.6.2 Damkцhler Number for Gas-Phase Reactions ........ 240
4.6.3 Extension to Axisymmetric Cases ................. 242
4.7 Turbulent Boundary-Layer Flows with Chemical
Reactions .............................................. 243
4.7.1 Introduction .................................... 243
4.7.2 Boundary-Layer Integral Matrix Procedure of
Evans ........................................... 243
4.7.3 Marching-Integration Procedure of Patankar and
Spalding ........................................ 257
4.7.4 Metal Erosion by Hot Reactive Gases ............. 272
4.7.5 Thermochemical Erosion of Graphite Nozzles of
Solid Rocket Motors ............................. 281
4.7.6 Turbulent Wall Fires ............................ 316
5 Ignition and Combustion of Single Energetic Solid
Particles ................................................... 330
5.1 Why Energetic Particles Are Attractive for Combustion
Enhancement in Propulsion .............................. 335
5.2 Metal Combustion Classification ........................ 336
5.3 Metal Particle Combustion Regimes ...................... 341
5.4 Ignition of Boron Particles ............................ 344
5.5 Experimental Studies ................................... 351
5.5.1 Gasification of Boron Oxides .................... 352
5.5.2 Chemical Kinetics Measurement ................... 353
5.5.3 Boron Ignition Combustion in a Controlled Hot
Gas Environment ................................. 354
5.6 Theoretical Studies of Boron Ignition and Combustion ... 362
5.6.1 First-Stage Combustion Models ................... 362
5.6.2 Second-Stage Combustion Models .................. 365
5.6.3 Chemical Kinetic Mechanisms ..................... 365
5.6.4 Methods for Enhancement of Boron Ignition ....... 367
5.6.5 Verification of Diffusion Mechanism of Boron
Particle Combustion ............................. 369
5.6.6 Chemical Identification of the Boron Oxide
Layer ........................................... 371
5.7 Theoretical Model Development of Boron Particle
Combustion ............................................. 372
5.7.1 First-Stage Combustion Model .................... 372
5.7.2 Second-Stage Combustion Model ................... 377
5.7.3 Comparison of Predicted and Measured
Combustion Times ................................ 381
5.8 Ignition and Combustion of Boron Particles in
Fluorine-Containing Environments ....................... 384
5.8.1 Multidiffusion Flat-Flame Burner ................ 385
5.8.2 Test Conditions ................................. 387
5.8.3 Experimental Results and Discussions ............ 388
5.8.4 Surface Reaction of (BO)n with HF(g) ............ 393
5.8.5 Surface Reaction of (BO)n with F(g) ............. 394
5.8.6 Governing Equations During the First-Stage
Combustion of Boron Particles ................... 395
5.8.7 Model for the "Clean" Boron Consumption
Process (Second-Stage Combustion) ............... 396
5.8.8 Numerical Solution .............................. 403
5.9 Combustion of a Single Aluminum Particle ................ 410
5.9.1 Background ...................................... 413
5.9.2 Physical Model .................................. 414
5.9.3 Aluminum-Combustion Mechanism ................... 417
5.9.4 Condensation Aspect of Model of Beckstead et
al. (2005) ...................................... 419
5.9.5 General Mathematical Model ...................... 422
5.9.6 Boundary Conditions ............................. 424
5.9.7 Dn Law in Aluminum Combustion ................... 429
5.10 Ignition of Aluminum Particle in a Controlled
Postflame Zone ......................................... 437
5.11 Physical Concepts of Aluminum Agglomerate Formation .... 439
5.11.1 Evolution Process of Condensed-Phase
Combustion Products ............................. 440
5.12 Combustion Behavior for Fine and Ultrafine Aluminum
Particles .............................................. 443
5.12.1 10 μm Aluminum Particle - Early Transitional
Structure ....................................... 444
5.12.2 100 nm Aluminum Particle - Late Transitional
Structure ....................................... 446
5.13 Potential Use of Energetic Nanosize Powders for
Combustion and Rocket Propulsion ....................... 447
Chapter Problems ............................................ 452
Project N 1 ................................................. 452
Project N 2 ................................................. 454
6 Combustion of Solid Particles in Multiphase Flows ........... 456
6.1 Void Fraction and Specific Particle Surface Area ....... 462
6.2 Mathematical Formulation ............................... 463
6.2.1 Formulation of the Heat Equation for a Single
Particle ........................................ 469
6.3 Method of Characteristics Formulation .................. 472
6.3.1 Linearization of the Characteristic Equations ... 476
6.4 Ignition Cartridge Results ............................. 477
6.5 Governing Equations for the Mortar Tube ................ 484
6.5.1 Initial Conditions .............................. 488
6.5.2 Boundary Conditions ............................. 488
6.5.3 Numerical Methods for Mortar Region Model ....... 490
6.6 Predictions of Mortar Performance and Model
Validation ............................................. 491
6.7 Approximate Riemann Solver: Roe-Pike Method ............ 496
6.8 Roe's Method ........................................... 499
6.9 Roe-Pike Method ........................................ 501
6.10 Entropy Condition and Entropy Fix ...................... 502
6.11 Flux Limiter ........................................... 503
6.12 Higher Order Correction ................................ 504
6.13 Three-Dimensional Wave Propagation ..................... 504
Appendix A: Useful Vector and Tensor Operations ................ 507
Appendix B: Constants and Conversion Factors Often Used in
Combustion ......................................... 534
Appendix C: Naming of Hydrocarbons ............................. 538
Appendix D: Particle Size-U.S. Sieve Size and Tyler Screen
Mesh Equivalents ................................... 541
Bibliography ................................................... 544
Index .......................................................... 571
|