Evolution inclusions and variation inequalities for Earth data processing III: Long-time behavior of evolution inclusions solutions in Earth data analysis (Heidelberg; New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаEvolution inclusions and variation inequalities for Earth data processing III: Long-time behavior of evolution inclusions solutions in Earth data analysis / M.Z.Zgurovsky et al. - Heidelberg; New York: Springer, 2012. - xli, 330 p.: ill. (some col.). - (Advances in mechanics and mathematics; 27). - Incl. bibl. ref. - Ind.: p.329-330. - ISBN 978-3-642-28511-0; ISSN 1571-8689
 

Оглавление / Contents
 
Introduction: Long-Time Behavior of Evolution Inclusion
Solutions in Earth Data Analysis ............................. xiii
References ................................................... xxxi

Part I  Longtime Behavior of Autonomous Differential-
Operator Systems Solutions for Earth Data Processing

1  Abstract Theory of Multivalued Semiflows ..................... 3
   1.1  oi-Limit Sets and Global Attractors of Multivalued
        Semiflows ............................................... 5
   1.2  Comparison Between Trajectory and Global Attractors
        for Evolution Systems .................................. 17
        1.2.1  The Main Definitions ............................ 18
        1.2.2  Main Results .................................... 21
        1.2.3  Some Model Applications ......................... 30
   References .................................................. 33
2  Auxiliary Properties of Evolution Inclusions Solutions
   for Earth Data Processing ................................... 37
   2.1  Preliminaries .......................................... 38
   2.2  Pointwise Pseudomonotone Maps .......................... 43
   2.3  Auxiliary Properties of Solutions for the First Order
        Evolution .............................................. 53
        2.3.1  The Setting of the Problem ...................... 53
        2.3.2  Preliminaries ................................... 54
        2.3.3  Supplementary Properties of Solutions ........... 56
   2.4  Asymptotic Behavior of the First Order Evolution
        Inclusions ............................................. 61
        2.4.1  Existence of the Global Attractor ............... 62
        2.4.2  Existence of the Trajectory Attractor ........... 63
        2.4.3  Comments ........................................ 66
        2.4.4  Conclusion ...................................... 67
   2.5  Auxiliary Properties of Solutions for the Second
        Order Evolution Inclusions ............................. 67
        2.5.1  Preliminary Results ............................. 69
        2.5.2  Auxiliary Properties of the Resolving Operator .. 71
   2.6  Auxiliary Properties of Solutions for the Second
        Order Evolution Inclusions ............................. 79
   2.7  Asymptotic Behavior of the Second-Order Evolution
        Inclusions ............................................. 86
        2.7.1  Existence of the Global Attractor ............... 87
        2.7.2  Existence of the Trajectory Attractor ........... 93
        2.7.3  Auxiliary Properties of the Global and
               Trajectory Attractors ........................... 96
   2.8  Applications .......................................... 100
        2.8.1  Climate Energy Balance Model ................... 100
        2.8.2  Application for General Classes High-Order
               Nonlinear PDEs ................................. 101
        2.8.3  Application for Chemotaxis Processes ........... 102
        2.8.4  Applications for Damped Viscoelastic Fields
               with Short Memory .............................. 105
        2.8.5  Applications for Nonsmooth Autonomous
               Piezoelectric Fields ........................... 110
   References ................................................. 116
3  Attractors for Lattice Dynamical Systems ................... 119
   3.1  Existence of Solutions ................................ 120
   3.2  A Priori Estimates .................................... 141
        3.2.1  Existence of a Bounded Absorbing Set ........... 141
        3.2.2  Estimate of the Tails .......................... 142
   3.3  Existence of the Global Attractor ..................... 144
   3.4  Approximation of the Attractor ........................ 151
   3.5  Application for Discrete Climate Energy Balance
        Model ................................................. 158
   References ................................................. 159

Part II  Longtime Behavior of Nonautonomous Differential-
Operator Systems Solutions for Earth Data Processing

4  On Global Attractors of Multivalued Semiprocesses and
   Nonautonomous Evolution Inclusions ......................... 163
   4.1  ω-Limit Sets and Global Attractors of Multivalued
        Semiprocesses ......................................... 164
   4.2  Global Attractors for Nonautonomous Differential
        Inclusions ............................................ 177
        4.2.1  Abstract Setting: Construction of the
               Multivalued Semiprocess ........................ 177
        4.2.2  Global Attractors of Nonautonomous Reaction-
               Diffusion Inclusions ........................... 182
   4.3  Applications for Chemical Kinetics Processes and
        Fields ................................................ 197
   References ................................................. 197
5  On the Kneser's Property for the Complex Ginzburg-Landau
   Equation and the Lotka-Volterra System with Diffusion ...... 199
   5.1  Setting of the Problem ................................ 202
   5.2  The Kneser's Property for Reaction-Diffusion
        Systems ............................................... 204
        5.2.1  Application to the Complex Ginzburg-Landau
               Equation ....................................... 220
        5.2.2  Application to the Lotka-Volterra System
               with Diffusion ................................. 221
   5.3  Connectedness of Attractors for Reaction-Diffusion
        Systems ............................................... 222
        5.3.1  Application to the Complex Ginzburg-Landau
               Equation ....................................... 227
        5.3.2  Application to the Lotka-Volterra System with
               Diffusion ...................................... 228
   References ................................................. 229
6  Pullback Attractors for a Class of Extremal Solutions of
   the 3D Navier-Stokes System ................................ 231
   6.1  Pullback Attractors for Multivalued Processes ......... 232
   6.2  Setting of the Problem and Main Results ............... 235
   6.3  Relationship with the Attractor of the 3D Navier-
        Stokes System ......................................... 250
   6.4  Applications for Hydrodynamic Problems ................ 253
   References ................................................. 256
7  Properties of Resolving Operator for Nonautonomous
   Evolution Inclusions ....................................... 259
   7.1  New Theorems for Existence Solutions for Skrypnik's
   Type Operators ............................................. 261
        7.1.1  Problem Definition ............................. 262
        7.1.2  The Class fig.1*) ................................ 264
        7.1.3  Classes of Multivalued Maps .................... 264
        7.1.4  The Main Results ............................... 267
   7.2  Noncoercive Evolution Inclusions for Sk Type
        Operators ............................................. 276
        7.2.1  Preliminaries: On Some Classes of Multivalued
               Maps ........................................... 279
        7.2.2  Setting of the Problem ......................... 281
        7.2.3  Main Results ................................... 285
        7.2.4  Applications ................................... 298
   7.3  Functional-Topological Properties of the Resolving
        Operator for the Evolution Inclusion .................. 300
        7.3.1  The Setting of the Problem ..................... 301
        7.3.2  Main Results ................................... 301
   7.4  Auxiliary Properties of Solutions for the
        Nonautonomous First-Order Evolution Inclusions with
        Uniformly Coercive Mappings, Long-Time Behavior, and
        Pullback Introduction: Long-Time Behavior of
        Evolution Inclusion Solutions in Earth Data Analysis
        Attractors ............................................ 313
   7.5  Applications .......................................... 317
   References ................................................. 317
A  Functional Spaces: The Embedding and Approximation
   Theorems ................................................... 321
   References ................................................. 328

Index ......................................................... 329


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:54 2019. Размер: 12,558 bytes.
Посещение N 1422 c 30.07.2013