Rencher A.C. Methods of multivariate analysis (Hoboken, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRencher A.C. Methods of multivariate analysis / A.C.Rencher, W.F.Christensen; Department of Statistics, Brigham Young University, Provo, UT. - 3rd ed. - Hoboken: Wiley, 2012. - xxv, 758 p. - (Wiley series in probability and statistics). - Ref.: p.728-744. - Ind.: p.745-758. - ISBN 978-0-470-17896-6
 

Оглавление / Contents
 
Preface ...................................................... xvii
Acknowledgments ............................................... xxi

1  Introduction ................................................. 1
   1.1  WHY MULTIVARIATE ANALYSIS? .............................. 1
   1.2  PREREQUISITES ........................................... 3
   1.3  OBJECTIVES .............................................. 3
   1.4  BASIC TYPES OF DATA AND ANALYSIS ........................ 4
2  Matrix Algebra ............................................... 7
   2.1  INTRODUCTION ............................................ 7
   2.2  NOTATION AND BASIC DEFINITIONS .......................... 8
        2.2.1  Matrices, Vectors, and Scalars ................... 8
        2.2.2  Equality of Vectors and Matrices ................. 9
        2.2.3  Transpose and Symmetric Matrices ................. 9
        2.2.4  Special Matrices ................................ 10
   2.3  OPERATIONS ............................................. 11
        2.3.1  Summation and Product Notation .................. 11
        2.3.2  Addition of Matrices and Vectors ................ 12
        2.3.3  Multiplication of Matrices and Vectors .......... 13
   2.4  PARTITIONED MATRICES ................................... 22
   2.5  RANK ................................................... 23
   2.6  INVERSE ................................................ 25
   2.7  POSITIVE DEFINITE MATRICES ............................. 26
   2.8  DETERMINANTS ........................................... 28
   2.9  TRACE .................................................. 31
   2.10 ORTHOGONAL VECTORS AND MATRICES ........................ 31
   2.11 EIGENVALUES AND EIGENVECTORS ........................... 32
        2.11.1  Definition ..................................... 32
        2.11.2  I + A and I - A ................................ 34
        2.11.3  tr(A) and |A| .................................. 34
        2.11.4  Positive Definite and Semidefinite Matrices .... 35
        2.11.5  The Product AB ................................. 35
        2.11.6  Symmetric Matrix ............................... 35
        2.11.7  Spectral Decomposition ......................... 35
        2.11.8  Square Root Matrix ............................. 36
        2.11.9  Square and Inverse Matrices .................... 36
        2.11.10 Singular Value Decomposition ................... 37
   2.12 KRONECKER AND VEC NOTATION ............................. 37
   Problems .................................................... 39
3  Characterizing and Displaying Multivariate Data ............. 47
   3.1  MEAN AND VARIANCE OF A UNIVARIATE RANDOM VARIABLE ...... 47
   3.2  COVARIANCE AND CORRELATION OF BIVARIATE RANDOM
        VARIABLES .............................................. 49
        3.2.1  Covariance ...................................... 49
        3.2.2  Correlation ..................................... 53
   3.3  SCATTERPLOTS OF BIVARIATE SAMPLES ...................... 55
   3.4  GRAPHICAL DISPLAYS FOR MULTIVARIATE SAMPLES ............ 56
   3.5  DYNAMIC GRAPHICS ....................................... 58
   3.6  MEAN VECTORS ........................................... 63
   3.7  COVARIANCE MATRICES .................................... 66
   3.8  CORRELATION MATRICES ................................... 69
   3.9  MEAN VECTORS AND COVARIANCE MATRICES FOR SUBSETS OF
        VARIABLES .............................................. 71
        3.9.1  Two Subsets ..................................... 71
        3.9.2  Three or More Subsets ........................... 73
   3.10 LINEAR COMBINATIONS OF VARIABLES ....................... 75
        3.10.1 Sample Properties ............................... 75
        3.10.2 Population Properties ........................... 81
   3.11 MEASURES OF OVERALL VARIABILITY ........................ 81
   3.12 ESTIMATION OF MISSING VALUES ........................... 82
   3.13 DISTANCE BETWEEN VECTORS ............................... 84
   Problems .................................................... 85
4  The Multivariate Normal Distribution ........................ 91
   4.1  MULTIVARIATE NORMAL DENSITY FUNCTION ................... 91
        4.1.1  Univariate Normal Density ....................... 92
        4.1.2  Multivariate Normal Density ..................... 92
        4.1.3  Generalized Population Variance ................. 93
        4.1.4  Diversity of Applications of the Multivariate
               Normal .......................................... 93
   4.2  PROPERTIES OF MULTIVARIATE NORMAL RANDOM VARIABLES ..... 94
   4.3  ESTIMATION IN THE MULTIVARIATE NORMAL .................. 99
        4.3.1  Maximum Likelihood Estimation ................... 99
        4.3.2  Distribution of у and S ........................ 100
   4.4  ASSESSING MULTIVARIATE NORMALITY ...................... 101
        4.4.1  Investigating Univariate Normality ............. 101
        4.4.2  Investigating Multivariate Normality ........... 106
   4.5  TRANSFORMATIONS TO NORMALITY .......................... 108
        4.5.1  Univariate Transformations to Normality ........ 109
        4.5.2  Multivariate Transformations to Normality ...... 110
   4.6  OUTLIERS .............................................. 111
        4.6.1  Outliers in Univariate Samples ................. 112
        4.6.2  Outliers in Multivariate Samples ............... 113
   Problems ................................................... 117
5  Tests on One or Two Mean Vectors ........................... 125
   5.1  MULTIVARIATE VERSUS UNIVARIATE TESTS .................. 125
   5.2  TESTS ON μ WITH ∑ KNOWN .............................. 126
        5.2.1  Review of Univariate Test for H0: μ = μ0
               with σ Known ................................... 126
        5.2.2  Multivariate Test for H0: μ = μ0 with ∑
               Known .......................................... 127
   5.3  TESTS ON μ WHEN ∑ IS UNKNOWN .......................... 130
        5.3.1  Review of Univariate t-Test for H0: μ = μ0
               with σ Unknown ................................. 130
        5.3.2  Hotelling's T2-Test for H0: μ = μ0 with ∑
               Unknown ........................................ 131
   5.4  COMPARING TWO MEAN VECTORS ............................ 134
        5.4.1  Review of Univariate Two-Sample t-Test ......... 134
        5.4.2  Multivariate Two-Sample T2 - Test .............. 135
        5.4.3  Likelihood Ratio Tests ......................... 139
   5.5  TESTS ON INDIVIDUAL VARIABLES CONDITIONAL ON
        REJECTION OF H0 BY THE T2-TEST ........................ 139
   5.6  COMPUTATION OF T2 ..................................... 143
        5.6.1  Obtaining T2 from a MANOVA Program ............. 143
        5.6.2  Obtaining T2 from Multiple Regression .......... 144
   5.7  PAIRED OBSERVATIONS TEST .............................. 145
        5.7.1  Univariate Case ................................ 145
        5.7.2  Multivariate Case .............................. 147
   5.8  TEST FOR ADDITIONAL INFORMATION ....................... 149
   5.9  PROFILE ANALYSIS ...................................... 152
        5.9.1  One-Sample Profile Analysis .................... 152
        5.9.2  Two-Sample Profile Analysis .................... 154
   Problems ................................................... 161
6  Multivariate Analysis of Variance .......................... 169
   6.1  ONE-WAY MODELS ........................................ 169
        6.1.1  Univariate One-Way Analysis of Variance
               (ANOVA) ........................................ 169
        6.1.2  Multivariate One-Way Analysis of Variance
               Model (MANOVA) ................................. 171
        6.1.3  Wilks'Test Statistic ........................... 174
        6.1.4  Roy's Test ..................................... 178
        6.1.5  Pillai and Lawley-Hotelling Tests .............. 179
        6.1.6  Unbalanced One-Way MANOVA ...................... 181
        6.1.7  Summary of the Four Tests and Relationship to
               T2 ............................................. 182
        6.1.8  Measures of Multivariate Association ........... 186
   6.2  COMPARISON OF THE FOUR MANOVA TEST STATISTICS ......... 189
   6.3  CONTRASTS ............................................. 191
        6.3.1  Univariate Contrasts ........................... 191
        6.3.2  Multivariate Contrasts ......................... 192
   6.4  TESTS ON INDIVIDUAL VARIABLES FOLLOWING REJECTION OF
        H0 BY THE OVERALL MANOVA TEST ......................... 195
   6.5  TWO-WAY CLASSIFICATION ................................ 198
        6.5.1  Review of Univariate Two-Way ANOVA ............. 198
        6.5.2  Multivariate Two-Way MANOVA .................... 201
   6.6  OTHER MODELS .......................................... 207
        6.6.1  Higher-Order Fixed Effects ..................... 207
        6.6.2  Mixed Models ................................... 208
   6.7  CHECKING ON THE ASSUMPTIONS ........................... 210
   6.8  PROFILE ANALYSIS ...................................... 211
   6.9  REPEATED MEASURES DESIGNS ............................. 215
        6.9.1  Multivariate Versus Univariate Approach ........ 215
        6.9.2  One-Sample Repeated Measures Model ............. 219
        6.9.3  fc-Sample Repeated Measures Model .............. 222
        6.9.4  Computation of Repeated Measures Tests ......... 224
        6.9.5  Repeated Measures with Two Within-Subjects
               Factors and One Between-Subjects Factor ........ 224
        6.9.6  Repeated Measures with Two Within-Subjects
               Factors and Two Between-Subjects Factors ....... 230
        6.9.7  Additional Topics .............................. 232
   6.10 GROWTH CURVES ......................................... 232
        6.10.1 Growth Curve for One Sample .................... 232
        6.10.2 Growth Curves for Several Samples .............. 239
        6.10.3 Additional Topics .............................. 241
   6.11 TESTS ON A SUB VECTOR ................................. 241
        6.11.1 Test for Additional Information ................ 241
        6.11.2 Stepwise Selection of Variables ................ 243
   Problems ................................................... 244
7  Tests on Covariance Matrices ............................... 259
   7.1  INTRODUCTION .......................................... 259
   7.2  TESTING A SPECIFIED PATTERN FOR Ј ..................... 259
        7.2.1  Testing H0: ∑ = ∑0 ............................. 260
        7.2.2  Testing Sphericity ............................. 261
        7.2.3  Testing H0: ∑ = σ2 [(1 - ρ)I + ρJ] ............. 263
   7.3  TESTS COMPARING COVARIANCE MATRICES ................... 265
        7.3.1  Univariate Tests of Equality of Variances ...... 265
        7.3.2  Multivariate Tests of Equality of Covariance
               Matrices ....................................... 266
   7.4  TESTS OF INDEPENDENCE ................................. 269
        7.4.1  Independence of Two Subvectors ................. 269
        7.4.2  Independence of Several Subvectors ............. 271
        7.4.3  Test for Independence of All Variables ......... 275
   Problems ................................................... 276
8  Discriminant Analysis: Description of Group Separation ..... 281
   8.1  INTRODUCTION .......................................... 281
   8.2  THE DISCRIMINANT FUNCTION FOR TWO GROUPS .............. 282
   8.3  RELATIONSHIP BETWEEN TWO-GROUP DISCRIMINANT ANALYSIS
        AND MULTIPLE REGRESSION ............................... 286
   8.4  DISCRIMINANT ANALYSIS FOR SEVERAL GROUPS .............. 288
        8.4.1  Discriminant Functions ......................... 288
        8.4.2  A Measure of Association for Discriminant
               Functions ...................................... 292
   8.5  STANDARDIZED DISCRIMINANT FUNCTIONS ................... 292
   8.6  TESTS OF SIGNIFICANCE ................................. 294
        8.6.1  Tests for the Two-Group Case ................... 294
        8.6.2  Tests for the Several-Group Case ............... 295
   8.7  INTERPRETATION OF DISCRIMINANT FUNCTIONS .............. 298
        8.7.1  Standardized Coefficients ...................... 298
        8.7.2  Partial F-Values ............................... 299
        8.7.3  Correlations Between Variables and
               Discriminant Functions ......................... 300
        8.7.4  Rotation ....................................... 301
   8.8  SCATTERPLOTS .......................................... 301
   8.9  STEPWISE SELECTION OF VARIABLES ....................... 303
   Problems ................................................... 306
9  Classification Analysis: Allocation of Observations to
   Groups ..................................................... 309
   9.1  INTRODUCTION .......................................... 309
   9.2  CLASSIFICATION INTO TWO GROUPS ........................ 310
   9.3  CLASSIFICATION INTO SEVERAL GROUPS .................... 314
        9.3.1  Equal Population Covariance Matrices: Linear
               Classification Functions ....................... 315
        9.3.2  Unequal Population Covariance Matrices:
               Quadratic Classification Functions ............. 317
   9.4  ESTIMATING MISCLASSIFICATION RATES .................... 318
   9.5  IMPROVED ESTIMATES OF ERROR RATES ..................... 320
        9.5.1  Partitioning the Sample ........................ 321
        9.5.2  Holdout Method ................................. 322
   9.6  SUBSET SELECTION ...................................... 322
   9.7  NONPARAMETRIC PROCEDURES .............................. 326
        9.7.1  Multinomial Data ............................... 326
        9.7.2  Classification Based on Density Estimators ..... 327
        9.7.3  Nearest Neighbor Classification Rule ........... 330
        9.7.4  Classification Trees ........................... 331
   Problems ................................................... 336
10 Multivariate Regression .................................... 339
   10.1 INTRODUCTION .......................................... 339
   10.2 MULTIPLE REGRESSION: FIXED x's ........................ 340
        10.2.1 Model for Fixed x's ............................ 340
        10.2.2 Least Squares Estimation in the Fixed-x Model .. 342
        10.2.3 An Estimator for σ2 ............................ 343
        10.2.4 The Model Corrected for Means .................. 344
        10.2.5 Hypothesis Tests ............................... 346
        10.2.6 R2 in Fixed-x Regression ....................... 349
        10.2.7 Subset Selection ............................... 350
   10.3 MULTIPLE REGRESSION: RANDOM x's ....................... 354
   10.4 MULTIVARIATE MULTIPLE REGRESSION: ESTIMATION .......... 354
        10.4.1 The Multivariate Linear Model .................. 354
        10.4.2 Least Squares Estimation in the Multivariate
               Model .......................................... 356
        10.4.3 Properties of Least Squares Estimator fig.3 ....... 358
        10.4.4 An Estimator for ∑ ............................. 360
        10.4.5 Model Corrected for Means ...................... 361
        10.4.6 Estimation in the Seemingly Unrelated
               Regressions (SUR) Model ........................ 362
   10.5 MULTIVARIATE MULTIPLE REGRESSION: HYPOTHESIS TESTS .... 364
        10.5.1 Test of Overall Regression ..................... 364
        10.5.2 Test on a Subset of the x's .................... 367
   10.6 MULTIVARIATE MULTIPLE REGRESSION: PREDICTION .......... 370
        10.6.1 Confidence Interval for E(y0) .................. 370
        10.6.2 Prediction Interval for a Future Observation
               y0 ............................................. 371
   10.7 MEASURES OF ASSOCIATION BETWEEN THE y's AND THE x's ... 372
   10.8 SUBSET SELECTION ...................................... 374
        10.8.1 Stepwise Procedures ............................ 374
        10.8.2 All Possible Subsets ........................... 377
   10.9  MULTIVARIATE REGRESSION: RANDOM x's .................. 380
   Problems ................................................... 381
11 Canonical Correlation ...................................... 385
   11.1 INTRODUCTION .......................................... 385
   11.2 CANONICAL CORRELATIONS AND CANONICAL VARIATES ......... 385
   11.3 PROPERTIES OF CANONICAL CORRELATIONS .................. 390
   11.4 TESTS OF SIGNIFICANCE ................................. 391
        11.4.1 Tests of No Relationship Between the y's and
               the x's ........................................ 391
        11.4.2 Test of Significance of Succeeding Canonical
               Correlations After the First ................... 393
   11.5 INTERPRETATION ........................................ 395
        11.5.1 Standardized Coefficients ...................... 396
        11.5.2 Correlations between Variables and Canonical
               Variвtes ....................................... 397
        11.5.3 Rotation ....................................... 397
        11.5.4 Redundancy Analysis ............................ 398
   11.6 RELATIONSHIPS OF CANONICAL CORRELATION ANALYSIS TO
        OTHER MULTIVARIATE TECHNIQUES ......................... 398
        11.6.1 Regression ..................................... 398
        11.6.2 MANOVA and Discriminant Analysis ............... 400
   Problems ................................................... 402
12 Principal Component Analysis ............................... 405
   12.1 INTRODUCTION .......................................... 405
   12.2 GEOMETRIC AND ALGEBRAIC BASES OF PRINCIPAL
        COMPONENTS ............................................ 406
        12.2.1 Geometric Approach ............................. 406
        12.2.2 Algebraic Approach ............................. 410
   12.3 PRINCIPAL COMPONENTS AND PERPENDICULAR REGRESSION ..... 412
   12.4 PLOTTING OF PRINCIPAL COMPONENTS ...................... 414
   12.5 PRINCIPAL COMPONENTS FROM THE CORRELATION MATRIX ...... 419
   12.6 DECIDING HOW MANY COMPONENTS TO RETAIN ................ 423
   12.7 INFORMATION IN THE LAST FEW PRINCIPAL COMPONENTS ...... 427
   12.8 INTERPRETATION OF PRINCIPAL COMPONENTS ................ 427
        12.8.1 Special Patterns in S or R ..................... 427
        12.8.2 Rotation ....................................... 429
        12.8.3 Correlations Between Variables and Principal
               Components ..................................... 429
   12.9 SELECTION OF VARIABLES ................................ 430
   Problems ................................................... 432
13 Exploratory Factor Analysis ................................ 435
   13.1 INTRODUCTION .......................................... 435
   13.2 ORTHOGONAL FACTOR MODEL ............................... 437
        13.2.1 Model Definition and Assumptions ............... 437
        13.2.2 Nonuniqueness of Factor Loadings ............... 441
   13.3 ESTIMATION OF LOADINGS AND COMMUNALITIES .............. 442
        13.3.1 Principal Component Method ..................... 443
        13.3.2 Principal Factor Method ........................ 448
        13.3.3 Iterated Principal Factor Method ............... 450
        13.3.4 Maximum Likelihood Method ...................... 452
   13.4 CHOOSING THE NUMBER OF FACTORS, m ..................... 453
   13.5 ROTATION .............................................. 457
        13.5.1 Introduction ................................... 457
        13.5.2 Orthogonal Rotation ............................ 458
        13.5.3 Oblique Rotation ............................... 462
        13.5.4 Interpretation ................................. 465
   13.6 FACTOR SCORES ......................................... 466
   13.7 VALIDITY OF THE FACTOR ANALYSIS MODEL ................. 470
   13.8 RELATIONSHIP OF FACTOR ANALYSIS TO PRINCIPAL
        COMPONENT ANALYSIS .................................... 475
   Problems ................................................... 476
14 Confirmatory Factor Analysis ............................... 479
   14.1 INTRODUCTION .......................................... 479
   14.2 MODEL SPECIFICATION AND IDENTIFICATION ................ 480
        14.2.1 Confirmatory Factor Analysis Model ............. 480
        14.2.2 Identified Models .............................. 482
   14.3 PARAMETER ESTIMATION AND MODEL ASSESSMENT ............. 487
        14.3.1 Maximum Likelihood Estimation .................. 487
        14.3.2 Least Squares Estimation ....................... 488
        14.3.3 Model Assessment ............................... 489
   14.4 INFERENCE FOR MODEL PARAMETERS ........................ 492
   14.5 FACTOR SCORES ......................................... 495
   Problems ................................................... 496
15 Cluster Analysis ........................................... 501
   15.1 INTRODUCTION .......................................... 501
   15.2 MEASURES OF SIMILARITY OR DISSIMILARITY ............... 502
   15.3 HIERARCHICAL CLUSTERING ............................... 505
        15.3.1 Introduction ................................... 505
        15.3.2 Single Linkage (Nearest Neighbor) .............. 506
        15.3.3 Complete Linkage (Farthest Neighbor) ........... 508
        15.3.4 Average Linkage ................................ 511
        15.3.5 Centroid ....................................... 514
        15.3.6 Median ......................................... 514
        15.3.7 Ward's Method .................................. 517
        15.3.8 Flexible Beta Method ........................... 520
        15.3.9 Properties of Hierarchical Methods ............. 521
        15.3.10 Divisive Methods .............................. 529
   15.4 NONHIERARCHICAL METHODS ............................... 531
        15.4.1 Partitioning ................................... 532
        15.4.2 Other Methods .................................. 540
   15.5 CHOOSING THE NUMBER OF CLUSTERS ....................... 544
   15.6 CLUSTER VALIDITY ...................................... 546
   15.7 CLUSTERING VARIABLES .................................. 547
   Problems ................................................... 548
16 Graphical Procedures ....................................... 555
   16.1 MULTIDIMENSIONAL SCALING .............................. 555
        16.1.1 Introduction ................................... 555
        16.1.2 Metric Multidimensional Scaling ................ 556
        16.1.3 Nonmetric Multidimensional Scaling ............. 560
   16.2 CORRESPONDENCE ANALYSIS ............................... 565
        16.2.1 Introduction ................................... 565
        16.2.2 Row and Column Profiles ........................ 566
        16.2.3 Testing Independence ........................... 570
        16.2.4 Coordinates for Plotting Row and Column
               Profiles ....................................... 572
        16.2.5 Multiple Correspondence Analysis ............... 576
   16.3 BIPLOTS ............................................... 580
        16.3.1 Introduction ................................... 580
        16.3.2 Principal Component Plots ...................... 581
        16.3.3 Singular Value Decomposition Plots ............. 583
        16.3.4 Coordinates .................................... 583
        16.3.5 Other Methods .................................. 585
   Problems ................................................... 588

Appendix A: Tables ............................................ 597
Appendix B: Answers and Hints to Problems ..................... 637
Appendix C: Data Sets and SAS Files ........................... 727
References .................................................... 728
Index ......................................................... 745


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:50 2019. Размер: 28,837 bytes.
Посещение N 1797 c 23.07.2013