Quantum dots: optics, electron transport, and future applications (Cambridge; New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаQuantum dots: optics, electron transport, and future applications / ed. by A.Tartakovskii. - Cambridge; New York: Cambridge University Press, 2012. - xviii, 358 p.: ill. - Incl. bibl. ref. - Ind.: p.356-358. - ISBN 978-1-107-01258-5
 

Оглавление / Contents
 
   List of contributors ........................................ xi
   Preface ..................................................... xv

Part I  Nanostructure design and structural properties of
epitaxially grown quantum dots and nanowires .................... 1
1  Growth of III-V semiconductor quantum dots
   C. Schneider, S. Höfling and A. Forchel ...................... 3
   1.1  Introduction ............................................ 3
   1.2  Properties of semiconductor quantum dots ................ 4
   1.3  Epitaxial growth of quantum dots on GaAs substrates ..... 6
   1.4  Quantum dot growth on InP substrates ................... 17
   1.5  Conclusion ............................................. 17
   References .................................................. 18
2  Single semiconductor quantum dots in nanowires: growth,
   optics, and devices
   M.E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini,
   R. Heeres, M. Hocevar, B.J. Witek, E.P.A.M. Bakkers
   and V. Zwiller .............................................. 21
   2.1  Introduction ........................................... 21
   2.2  Nanowire quantum dot growth ............................ 21
   2.3  Optical properties of nanowire quantum dots ............ 25
   2.4  Nanowire quantum dot devices ........................... 30
   References .................................................. 37
3  Atomic-scale analysis of self-assembled quantum dots by
   cross-sectional scanning, tunneling microscopy, and atom
   probe tomography
   J. G. Keizer and P. M. Koenraad ............................. 41
   3.1  Introduction ........................................... 41
   3.2  Specimen preparation ................................... 41
   3.3  Quantum dot analysis by X-STM .......................... 42
   3.4  Application to control of quantum dot formation ........ 45
   3.5  Outlook: atom probe tomography ......................... 55
   3.6  Conclusion ............................................. 58
   References .................................................. 58

Part II  Manipulation of individual quantum states in quantum
dots using optical techniques .................................. 61
4  Studies of the hole spin in self-assembled quantum dots
   using optical techniques
   B.D. Gerardot and R.J. Warburton ............................ 63
   4.1  Self-assembled quantum dots as host for spin qubits .... 63
   4.2  Motivating factors for hole spins ...................... 64
   4.3  Spectroscopy of few-level systems ...................... 67
   4.4  Hole spin sample design ................................ 69
   4.5  Spin initialization, manipulation, and read-out ........ 73
   4.6  Strength of the hole hyperfine interaction ............. 79
   4.7  Summary and outlook .................................... 80
   Acknowledgements ............................................ 80
   References .................................................. 81
5  Resonance fluorescence from a single quantum dot
   A.N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and
   M. Atatiire ................................................. 86
   5.1  Introduction ........................................... 86
   5.2  Resonance fluorescence from a two-level system ......... 87
   5.3  Observation of resonance fluorescence .................. 89
   5.4  Conclusion ............................................ 100
   References ................................................. 101
6  Coherent control of quantum dot excitons using ultra-fast
   optical techniques: the role of acoustic phonons
   A.J. Ramsay and A.M. Fox ................................... 103
   6.1  Introduction .......................................... 103
   6.2  Experimental methods .................................. 106
   6.3  Candidate mechanisms for the intensity damping ........ 109
   6.4  Temperature-dependent measurements of Rabi
        rotations ............................................. 110
   6.5  Model of LA-phonon induced dephasing .................. 112
   6.6  Comparison of experiment to model ..................... 114
   6.7  Outlook ............................................... 115
   Acknowledgements ........................................... 115
   References ................................................. 115
7  Holes in quantum dot molecules: structure, symmetry, and
   spin
   M.F. Doty and J.I. Climente ................................ 118
   7.1  Introduction .......................................... 118
   7.2  Growth and spectroscopic characterization of QDMs ..... 119
   7.3  Anticrossings and the formation of molecular states ... 120
   7.4  Spin projections and Zeeman splitting ................. 122
   7.5  Antibonding molecular ground states ................... 126
   7.6  Hole-spin mixing ...................................... 128
   7.7  Summary ............................................... 132
   References ................................................. 132

Part III  Optical properties of quantum dots in photonic
cavities and plasmon-coupled dots ............................. 135
8  Deterministic light-matter coupling with single quantum
   dots
   P. Senellart ............................................... 137
   8.1  QDs in cavities: basics, motivation, first
        demonstrations ........................................ 137
   8.2  Determininistic coupling of a QD to a cavity .......... 138
   8.3  An ultrabright source of entangled photon pairs ....... 144
   8.4  Some perspectives ..................................... 149
   References ................................................. 150
9  Quantum dots in photonic crystal cavities
   A. Faraon, D. Englund, I. Fushman, A. Majumdar and
   J. Vučković ................................................ 153
   9.1  Introduction .......................................... 153
   9.2  Quantum dots and photonic crystals .................... 154
   9.3  Experimental techniques ............................... 157
   9.4  Probing the strong-coupling regime .................... 161
   9.5  Nonlinear optics at the single photon level ........... 163
   9.6  Applications and future directions .................... 165
   References ................................................. 166
10 Photon statistics in quantum dot micropillar emission
   M. Aßmann and M. Bayer ..................................... 169
   10.1 Introduction .......................................... 169
   10.2 Theoretical background ................................ 169
   10.3 Experimental approaches ............................... 174
   10.4 Experimental results .................................. 176
   10.5 Summary and outlook ................................... 182
   References ................................................. 183
11 Nanoplasmonics with colloidal quantum dots
   V.V. Temnov and U. Woggon .................................. 185
   11.1 Introduction .......................................... 185
   11.2 Optical and electronic properties of colloidal
        semiconductor quantum dots ............................ 185
   11.3 Surface plasmons in low-dimensional metallic
        nanostructures ........................................ 188
   11.4 Coupling of quantum dots to metal surfaces ............ 191
   11.5 Practical application: QD-based all-optical
        plasmonic modulator ................................... 196
   11.6 Perspective: quantum optics with surface plasmons ..... 197
   References ................................................. 197

Part IV  Quantum dot nano-laboratory: magnetic ions and
nuclear spins in a dot ........................................ 203
12 Dynamics and optical control of an individual Mn spin
   in a quantum dot
   L. Besombes, C. Le Gall, H. Boukari and H. Mariette ........ 205
   12.1 Introduction .......................................... 205
   12.2 II-VI diluted magnetic semiconductor QDs .............. 206
   12.3 Optical Mn spin orientation ........................... 208
   12.4 Resonant optical pumping of a single Mn spin .......... 214
   12.5 Conclusion ............................................ 218
   References ................................................. 218
13 Optical spectroscopy of InAs/GaAs quantum dots doped with
   a single Mn atom
   O. Krebs and A. Lemaître ................................... 221
   13.1 Introduction .......................................... 221
   13.2 The Mn acceptor impurity A0 ........................... 222
   13.3 Micro-photoluminescence setup in magnetic field ....... 223
   13.4 Zero-field signature of Mn doping ..................... 224
   13.5 Energy levels for trions in zero field ................ 225
   13.6 Photoluminescence in a longitudinal magnetic field .... 227
   13.7 Excitons versus trions ................................ 228
   13.8 Coupling to dark states due to anisotropic exchange ... 230
   13.9 Theoretical simulation of PL spectra .................. 232
   13.10 Conclusion ........................................... 234
   References ................................................. 235
14 Nuclear spin effects in quantum dot optics
   B. Urbaszek, B. Eble, T. Amand and X. Marie ................ 237
   14.1 Introduction .......................................... 237
   14.2 Carrier spin decoherence .............................. 242
   14.3 Dynamic nuclear polarization .......................... 246
   14.4 Perspectives .......................................... 250
   References ................................................. 251

Part V Electron transport in quantum dots fabricated by
lithographie techniques from III-V semiconductors and
graphene ...................................................... 253
15 Electrically controlling single spin coherence in
   semiconductor nanostructures
   Y. Dovzhenko, K. Wang, M.D. Schroer and J.R. Petta ......... 255
   15.1 Introduction .......................................... 255
   15.2 Sample fabrication .................................... 256
   15.3 Measurement technology ................................ 258
   15.4 Quantum control ....................................... 262
   15.5 Outlook ............................................... 272
   Acknowledgements ........................................... 273
   References ................................................. 274
16 Theory of electron and nuclear spins in III-V
   semiconductor and carbon-based dots
   H. Ribeiro and G. Burkard .................................. 277
   16.1 The magnetic hyperfine Hamiltonian .................... 277
   16.2 Nuclear - nuclear interactions ........................ 280
   16.3 Hyperfine interaction in semiconductor-based
        quantum dots .......................................... 281
   16.4 Hyperfine interaction in carbon-based quantum dots
        References ............................................ 292
17 Graphene quantum dots: transport experiments and local
   imaging
   S. Schnez, J. Guettinger, F. Molitor, C. Stampfer,
   M. Huefner, T. Ihn and K. Ensslin .......................... 296
   17.1 Introduction .......................................... 296
   17.2 Theoretical background ................................ 297
   17.3 Transport experiments ................................. 303
   17.4 Scanning-gate microscopy .............................. 308
   17.5 Summary and outlook ................................... 312
   References ................................................. 313

Part VI  Single dots for future telecommunications
applications .................................................. 317
18 Electrically operated entangled light sources based on
   quantum dots
   R.M. Stevenson, A.J. Bennett and A.J. Shields .............. 319
   18.1 Introduction .......................................... 319
   18.2 Electrically driven entangled light generation ........ 322
   18.3 Electrical control of entangled light ................. 326
   18.4 Interaction of entangled exciton-photon states with
        nuclei ................................................ 331
   18.5 Conclusion ............................................ 337
   References ................................................. 337
19 Deterministic single quantum dot cavities at
   telecommunication wavelengths
   D. Dalacu, K. Mnaymneh, J. Lapointe, G.C. Aers,
   P.J. Poole, R.L. Williams and S. Hughes .................... 341
   19.1 Introduction .......................................... 341
   19.2 Directed self-assembly ................................ 342
   19.3 Spectroscopy of site-controlled single quantum dots ... 345
   19.4 Integration of site-controlled quantum dots and
        cavities .............................................. 347
   19.5 Conclusion ............................................ 352
        References ............................................ 353
        Index ................................................. 356


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:50 2019. Размер: 17,150 bytes.
Посещение N 1537 c 23.07.2013