Makeenko Y. Methods of contemporary gauge theory (Cambridge; New York, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMakeenko Y. Methods of contemporary gauge theory. - Cambridge; New York: University Press, 2005. - xii, 417 p.: ill. - (Cambridge monographs on mathematical physics). - Incl. bibl. ref. - Ind.: p.411-417. - ISBN 0-521-02215-0
 

Место хранения: 016 | Библиотека Института ядерной физики СО РАН | Новосибирск

Оглавление / Contents
 
Part 1: Path Integrals .......................................... 1

1  Operator calculus ............................................ 3
   1.1  Free propagator ......................................... 3
   1.2  Euclidean formulation ................................... 6
   1.3  Path-ordering of operators ............................. 10
   1.4  Feynman disentangling .................................. 13
   1.5  Calculation of the Gaussian path integral .............. 18
   1.6  Transition amplitudes .................................. 20
   1.7  Propagators in external field .......................... 29
2  Second quantization ......................................... 35
   2.1  Integration over fields ................................ 35
   2.2  Grassmann variables .................................... 37
   2.3  Perturbation theory .................................... 38
   2.4  Schwinger-Dyson equations .............................. 40
   2.5  Commutator terms ....................................... 40
   2.6  Schwinger-Dyson equations (continued) .................. 41
   2.7  Regularization ......................................... 45
3  Quantum anomalies from path integral ........................ 47
   3.1  QED via path integral .................................. 47
   3.2  Chiral Ward identity ................................... 48
   3.3  Chiral anomaly ......................................... 51
   3.4  Chiral anomaly (calculation) ........................... 55
   3.5  Scale anomaly .......................................... 59
4  Instantons in quantum mechanics ............................. 65
   4.1  Double-well potential .................................. 65
   4.2  The instanton solution ................................. 68
   4.3  Instanton contribution to path integral ................ 70
   4.4  Symmetry restoration by instantons ..................... 75
   4.5  Topological charge and θ-vacua ......................... 76
   Bibliography to Part 1 ...................................... 79
   
Part 2: Lattice Gauge Theories ................................. 83

5  Observables in gauge theories ............................... 85
   5.1  Gauge invariance ....................................... 85
   5.2  Phase factors (definition) ............................. 88
   5.3  Phase factors (properties) ............................. 93
   5.4  Aharonov-Bohm effect ................................... 95
6  Gauge fields on a lattice ................................... 99
   6.1  Sites, links, plaquettes and all that ................. 100
   6.2  Lattice formulation ................................... 102
   6.3  The Haar measure ...................................... 107
   6.4  Wilson loops .......................................... 110
   6.5  Strong-coupling expansion ............................. 113
   6.6  Area law and confinement .............................. 117
   6.7  Asymptotic scaling .................................... 119
7  Lattice methods ............................................ 123
   7.1  Phase transitions ..................................... 124
   7.2  Mean-field method ..................................... 128
   7.3  Mean-field method (variational) ....................... 131
   7.4  Lattice renormalization group ......................... 133
   7.5  Monte Carlo method .................................... 136
   7.6  Some Monte Carlo results .............................. 140
8  Fermions on a lattice ...................................... 143
   8.1  Chiral fermions ....................................... 143
   8.2  Fermion doubling ...................................... 145
   8.3  Kogut-Susskind fermions ............................... 151
   8.4  Wilson fermions ....................................... 152
   8.5  Quark condensate ...................................... 156
9  Finite temperatures ........................................ 159
   9.1  Feynman-Kac formula ................................... 160
   9.2  QCD at finite temperature ............................. 166
   9.3  Confinement criterion at finite temperature ........... 168
   9.4  Deconfining transition ................................ 170
   9.5  Restoration of chiral symmetry ........................ 175
   Bibliography to Part 2 ..................................... 179
   
Part 3: 1/N Expansion ......................................... 185

10 O(N) vector models ......................................... 187
   10.1 Four-Fermi theory ..................................... 188
   10.2 Bubble graphs as the zeroth order in 1/N .............. 191
   10.3 Functional methods for φ4 theory ...................... 200
   10.4 Nonlinear sigma model ................................. 208
   10.5 Large-N factorization in vector models ................ 211
11 Multicolor QCD.............................................. 213
   11.1 Index or ribbon graphs ................................ 214
   11.2 Planar and nonplanar graphs ........................... 218
   11.3 Planar and nonplanar graphs (the boundaries) .......... 224
   11.4 Topological expansion and quark loops ................. 230
   11.5 't Hooft versus Veneziano limits ...................... 233
   11.6 Large-N factorization ................................. 237
   11.7 The master field ...................................... 243
   11.8 1/N as semiclassical expansion ........................ 246
12 QCD in loop space .......................................... 249
   12.1 Observables in terms of Wilson loops .................. 249
   12.2 Schwinger-Dyson equations for Wilson loop ............. 255
   12.3 Path and area derivatives ............................. 258
   12.4 Loop equations ........................................ 263
   12.5 Relation to planar diagrams ........................... 267
   12.6 Loop-space Laplacian and regularization ............... 269
   12.7 Survey of nonperturbative solutions ................... 274
   12.8 Wilson loops in QCD2 .................................. 275
   12.9 Gross-Witten transition in lattice QCD2 ............... 282
13 Matrix models .............................................. 287
   13.1 Hermitian one-matrix model ............................ 288
   13.2 Hermitian one-matrix model (solution at N = ∞) ........ 294
   13.3 The loop equation ..................................... 297
   13.4 Solution in 1/N ....................................... 300
   13.5 Continuum limit ....................................... 303
   13.6 Hermitian multimatrix models .......................... 311
   Bibliography to Part 3 ..................................... 315
   
Part 4: Reduced Models ........................................ 323

14 Eguchi-Kawai model ......................................... 325
   14.1 Reduction of the scalar field (lattice) ............... 325
   14.2 Reduction of the scalar field (continuum) ............. 330
   14.3 Reduction of the Yang-Mills field ..................... 332
   14.4 The continuum Eguchi-Kawai model ...................... 336
   14.5 Rd symmetry in perturbation theory .................... 340
   14.6 Quenched Eguchi-Kawai model ........................... 342
15 Twisted reduced models ..................................... 351
   15.1 Twisting prescription ................................. 351
   15.2 Twisted reduced model for scalars ..................... 355
   15.3 Twisted Eguchi-Kawai model ............................ 362
   15.4 Twisting prescription in the continuum ................ 368
   15.5 Continuum version of ТЕК .............................. 372
16 Noncommutative gauge theories .............................. 377
   16.1 The noncommutative space .............................. 378
   16.2 The Uθ(1) gauge theory ................................ 383
   16.3 One-loop renormalization .............................. 386
   16.4 Noncommutative quantum electrodynamics ................ 389
   16.5 Wilson loops and observables .......................... 391
   16.6 Compactification to tori .............................. 396
   16.7 Morita equivalence .................................... 401
   Bibliography to Part 4 ..................................... 405

Index ......................................................... 411


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:50 2019. Размер: 12,269 bytes.
Посещение N 1310 c 23.07.2013