Kovchegov Y.V. Quantum chromodynamics at high energy (Cambridge; New York, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKovchegov Y.V. Quantum chromodynamics at high energy / Y.V.Kovchegov, E.Levin. - Cambridge; New York: Cambridge University Press, 2012. - x, 339 p.: ill. - (Cambridge monographs on particle physics, nuclear physics, and cosmology; 33). - Ref.: p.319-335. - Ind.: p.336-339. - ISBN 978-0-521-11257-4
 

Место хранения: 016 | Библиотека Института ядерной физики СО РАН | Новосибирск

Оглавление / Contents
 
   Preface ..................................................... ix
1  Introduction: basics of QCD perturbation theory .............. 1
   1.1  The QCD Lagrangian ...................................... 1
   1.2  A review of Feynman rules for QCD ....................... 3
        1.2.1  QCD Feynman rules ................................ 6
   1.3  Rules of light cone perturbation theory ................. 7
        1.3.1  QCD LCPT rules .................................. 10
        1.3.2  Light cone wave function ........................ 12
   1.4  Sample LCPT calculations ............................... 14
        1.4.1  LCPT "cross-check" .............................. 14
        1.4.2  A sample light cone wave function ............... 17
   1.5  Asymptotic freedom ..................................... 19
2  Deep inelastic scattering ................................... 22
   2.1  Kinematics, cross section, and structure functions ..... 22
   2.2  Parton model and Bjorken scaling ....................... 27
        2.2.1  Warm-up: DIS on a single free quark ............. 27
        2.2.2  Full calculation: DIS on a proton ............... 29
   2.3  Space-time structure of DIS processes .................. 38
   2.4  Violation of Bjorken scaling; the Dokshitzer-Gribov-
        Lipatov-Altarelli-Parisi evolution equation ............ 43
        2.4.1  Parton distributions ............................ 43
        2.4.2  Evolution for quark distribution ................ 45
        2.4.3  The DGLAP evolution equations ................... 53
        2.4.4  Gluon-gluon splitting function .................. 56
        2.4.5  General solution of the DGLAP equations ......... 60
        2.4.6  Double logarithmic approximation ................ 63
   Further reading ............................................. 72
   Exercises ................................................... 72
3  Energy evolution and leading logarithm-1/x approximation
   in QCD ...................................................... 74
   3.1  Paradigm shift ......................................... 74
   3.2  Two-gluon exchange: the Low-Nussinov pomeron ........... 76
   3.3  The Balitsky-Fadin-Kuraev-Lipatov evolution equation ... 82
        3.3.1  Effective emission vertex ....................... 83
        3.3.2  Virtual corrections and reggeized gluons ........ 88
        3.3.3  The BFKL equation ............................... 92
        3.3.4  Solution of the BFKL equation ................... 95
        3.3.5  Bootstrap property of the BFKL equation* ....... 103
        3.3.6  Problems of BFKL evolution: unitarity and
               diffusion ...................................... 107
   3.4  The nonlinear Gribov-Levin-Ryskin and Mueller-Qiu
        evolution equation .................................... 112
        3.4.1  The physical picture of parton saturation ...... 112
        3.4.2  The GLR-MQ equation ............................ 115
   Further reading ............................................ 121
   Exercises .................................................. 121
4  Dipole approach to high parton density QCD ................. 123
   4.1  Dipole picture of DIS ................................. 123
   4.2  Glauber-Gribov-Mueller multiple-rescatterings
        formula ............................................... 129
        4.2.1  Scattering on one nuclйon ...................... 130
        4.2.2  Scattering on many nuclйons .................... 133
        4.2.3  Saturation picture from the GGM formula ........ 139
   4.3  Mueller' s dipole model ............................... 141
        4.3.1  Dipole wave function and generating
               functional ..................................... 141
        4.3.2  The BFKL equation in transverse coordinate
               space .......................................... 153
        4.3.3  The general solution of the coordinate-space
               BFKL equation .................................. 159
   4.4  The Balitsky-Kovchegov equation ....................... 163
   4.5  Solution of the Balitsky-Kovchegov equation ........... 172
        4.5.1  Solution outside the saturation region;
               extended geometric scaling ..................... 172
        4.5.2  Solution inside the saturation region;
               geometric scaling .............................. 176
        4.5.3  Semiclassical solution ......................... 178
        4.5.4  Traveling wave solution ........................ 181
        4.5.5  Numerical solutions ............................ 184
        4.5.6  Map of high energy QCD ......................... 188
   4.6  The Bartels-Kwiecinski-Praszalowicz equation .......... 189
   4.7  The odderon ........................................... 192
   Further reading ............................................ 195
   Exercises .................................................. 196
5  Classical gluon fields and the color glass condensate ...... 198
   5.1  Strong classical gluon fields: the McLerran-
        Venugopalan model ..................................... 198
        5.1.1  The key idea of the approach ................... 198
        5.1.2  Classical gluon field of a single nucleus ...... 200
        5.1.3  Classical gluon distribution ................... 205
   5.2  The Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-
        Kovner evolution equation ............................. 215
        5.2.1  The color glass condensate (CGC) ............... 215
        5.2.2  Derivation of JIMWLK evolution ................. 216
        5.2.3  Obtaining BK from JIMWLK and the Balitsky
               hierarchy ...................................... 224
   Further reading ............................................ 226
   Exercises .................................................. 226
6  Corrections to nonlinear evolution equations ............... 228
   6.1  Why we need higher-order corrections .................. 228
   6.2  Running-coupling corrections to the BFKL, BK, and
        JIMWLK evolutions ..................................... 229
        6.2.1  An outline of the running-coupling
               calculation .................................... 230
        6.2.2  Impact of running coupling on small-x
               evolution ...................................... 235
        6.2.3  Nonperturbative effects and renormalons ........ 240
   6.3  The next-to-leading order BFKL and BK equations ....... 242
        6.3.1  Short summary of NLO calculations .............. 243
        6.3.2  Renormalization-group-improved NLO approach .... 245
   Further reading ............................................ 248
   Exercises .................................................. 249
7  Diffraction at high energy ................................. 250
   7.1  General concepts ...................................... 250
        7.1.1  Diffraction in optics .......................... 250
        7.1.2  Elastic scattering and inelastic diffraction ... 253
   7.2  Diffractive dissociation in DIS ....................... 255
        7.2.1  Low-mass diffraction ........................... 256
        7.2.2  Nonlinear evolution equation for high-mass
               diffraction .................................... 262
   Further reading ............................................ 270
   Exercises .................................................. 271
8  Particle production in high energy QCD ..................... 272
   8.1  Gluon production at the lowest order .................. 272
   8.2  Gluon production in DIS and pA collisions ............. 274
        8.2.1  Quasi-classical gluon production ............... 274
        8.2.2  Including nonlinear evolution .................. 284
   8.3  Gluon production in nucleus-nucleus collisions ........ 290
   Further reading ............................................ 291
   Exercises .................................................. 292
9  Instead of conclusions ..................................... 293
   9.1  Comparison with experimental data ..................... 293
        9.1.1   Deep inelastic scattering ..................... 294
        9.1.2  Proton(deuteron)-nucleus collisions ............ 295
        9.1.3  Proton-proton and heavy ion collisions ......... 297
   9.2 Unsolved theoretical problems .......................... 303
   Further reading ............................................ 306

Appendix A: Reference formulas ................................ 307
   A.l  Dirac matrix element tables ........................... 307
   A.2  Some useful integrals ................................. 307
   A.3  Another useful integral ............................... 310

Appendix B: Dispersion relations, analyticity, and
   unitarity of the scattering amplitude ...................... 312
   B.l  Crossing symmetry and dispersion relations ............ 312
   B.2  Unitarity and the Froissart-Martin bound .............. 316

   References ................................................. 319
   Index ...................................................... 336


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:50 2019. Размер: 12,991 bytes.
Посещение N 1331 c 23.07.2013