Ikeya M. New applications of electron spin resonance: dating, dosimetry and microscopy (Singapore; River Edge, 1993). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаIkeya M. New applications of electron spin resonance: dating, dosimetry and microscopy / copy ed. by M.R.Zimmerman, N.Whitehead. - Singapore; River Edge: World Scientific, 1993. - xx, 500 p.: ill. - Bibliogr. at the end of the chapters. - Ind.: p.485-500. - ISBN 981-02-1199-6; ISBN 981-02-1200-3
 

Оглавление / Contents
 
Chapter 1  Clocks of Elapsed Time - The Place of ESR Dating ..... 1
1.1  Introduction ............................................... 2
1.2  Radioisotope dating ........................................ 3
     1.2.1  Radiocarbon (14C) dating ............................ 4
     1.2.2  Potassium-argon 40K/40Ar dating ..................... 7
     1.2.3 Uranium-thorium 230Th/234U dating .................... 8
1.3  Radiation effect dating ................................... 10
     1.3.1 Fission track dating ................................ 10
     1.3.2 Thermoluminescence TL and ESR ....................... 12
     1.3.3 Optically stimulated luminescence OSL ............... 15
1.4  Chemical dating ........................................... 17
     1.4.1  Chemical reactions and analytical dating ........... 17
     1.4.2  Amino acid racemization ............................ 18
     1.4.3  Hydration of obsidian .............................. 18
1.5  Other methods in geochronology ............................ 19
     1.5.1 Geomagnetism and archaeomagnetism ................... 19
     1.5.2 Isotopic variation: δ18 and δ13 С ................... 19
     1.3.3 Dendrochronology .................................... 19
1.6  Summary ................................................... 20

Chapter 2 Introduction to ESR - What is ESR? ................... 23
2.1  Introduction .............................................. 24
2.2  Electron spins and defects ................................ 25
     2.2.1  Election spin ...................................... 25
     2.2.2  Color center defects ............................... 26
2.3  Electron spin resonance ESR ............................... 28
     2.3.1  Fundamental principle of ESR ....................... 28
     2.3.2  ESR spectrometer ................................... 31
     2.3.3  Data acquisition and processing .................... 33
2.4  ESR spectra and parameters ................................ 34
     2.4.1  Lineshapes: Gaussian and Lorentzian shapes ......... 34
     2.4.2  g factor ........................................... 35
     2.4.3  Anisotropic g factors and random orientation ....... 37
     2.4.4  Hyperfine (hf) structures .......................... 38
     2.4.5  Proton hyperfine structures: equivalent protons .... 44
     2.4.6  McConnell's relation ............................... 46
     2.4.7  Superhyperfine (shf) structures .................... 47
     2.4.8  Fine structures .................................... 50
     2.4.9  NaCl(Mn2+:F-) ...................................... 52
2.5  Powder spectrum ........................................... 53
     2.5.1  Averaging of g factors ............................. 53
     2.5.2  Averaging of fine and hyperfine structures ......... 55
2.6  Signal saturation, relaxation and ENDOR ................... 57
     2.6.1  Relaxation rime and saturation ..................... 57
     2.6.2  Electron nuclear double resonance ENDOR ............ 58
     2.6.3  Pulsed ESR: spin-echo .............................. 60
     2.6.4  Fourier transform (FT-)ESR ......................... 63
     2.6.5  Vector transfer detection .......................... 64
2.7  Summary ................................................... 64

Chapter 3  ESR Dating and Dosimetry: Principles and
Procedures ..................................................... 67
3.1  Principles of ESR dating and dosimetry .................... 68
3.2  Procedures for ESR dating ................................. 70
     3.2.1  Additive dose method ............................... 70
     3.2.2  "Wait and see" method .............................. 72
     3.2.3  Accelerated passage of time for chemical
            reactions .......................................... 74
     3.2.4  ESR dendrochronology ............................... 74
     3.2.5  Plateau method ..................................... 74
     3.2.6  Direct age determination from a theoretical
            growth curve ....................................... 76
3.3  Scope of ESR dating: events which set clock to zero ....... 77
     3.3.1  Crystallization .................................... 77
     3.3.2  Action of heat ..................................... 77
     3.3.3  Optical bleaching .................................. 77
     3.3.4  Mechanical bleaching or annealing .................. 78
     3.3.5  Surface etching in nature .......................... 78
3.4  Natural Annealing: lifetime of defects .................... 78
     3.4.1  First-order annealing .............................. 80
     3.4.2  Second-order annealing ............................. 83
3.5  Growth Curve: formation and decay of defects .............. 85
     3.5.1  Insensitive volume around a defect ................. 85
     3.5.2  Formation and first-order decay in nature .......... 87
     3.5.3  Formation and second-order decay in nature ......... 91
3.6  Additive dose method without extrapolation: exact
     solution .................................................. 91
3.7  Time range and samples .................................... 92
     3.7.1  Time range: upper and lower limits ................. 92
     3.7.2  Samples dated with ESR ............................. 94
3.8  Technical procedures ...................................... 94
     3.8.1  Sampling and preparation ........................... 95
     3.8.2  ESR measurements ................................... 96
     3.8.3  Artificial irradiation ............................. 99
3.9  Brief history of ESR dating and dosimetry ................. 99
     3.9.1  Development of ESR dating and dosimetry ............ 99
     3.9.2  Symposium and proceedings ......................... 101
3.10 Summary .................................................. 102

Chapter 4 Assessment of Radiation Dose ........................ 105
4.1  Introduction ............................................. 106
4.2  Dosimetric quantities and units .......................... 107
4.3  Annual dose rate: radioactive equilibrium ................ 108
     4.3.1  Natural radioactivity ............................. 108
     4.3.2  Annual dose rate .................................. 111
4.4  Radiation dose assessment ................................ 112
     4.4.1  Ranges and quality of α-, β- and γ-rays ........... 112
     4.4.2  Quality effect: k-values for α-rays ............... 115
     4.4.3  Internal and external doses ....................... 116
     4.4.4  Dose correction factors ........................... 118
4.5  Radioactive disequilibrium ............................... 123
     4.5.1  Initial incorporation ............................. 123
     4.5.2  238U-series disequilibrium: closed system ......... 124
     4.5.3  Open system disequilibrium: uranium accumulation .. 126
     4.5.4  ESR isochron dating ............................... 130
4.6  Methods used to measure dose ............................. 131
     4.6.1  Measurements of radioactive elements .............. 131
     4.6.2  External radiation measurement .................... 136
     4.6.3  Constancy of annual dose rate ..................... 137
4.7  Summary .................................................. 138

Chapter 5  CaCO3: Cave Deposits ............................... 141
5.1  Introduction ............................................. 142
5.2  Crystal structure and defects in calcite CaCO3 ........... 143
     5.2.1  Crystal structure ................................. 143
     5.2.2  Radiation-induced intrinsic defects ............... 145
     5.2.3  Impurity-related defects .......................... 147
     5.2.4  Characterization of ESR signals relevant to
            dating ............................................ 150
     5.2.5  Alpha-ray-induced defects: axial CO2 .............. 154
5.3  Thermoluminescence TL .................................... 155
5.4  Speleothems .............................................. 156
     5.4.1  Mechanism of carbonate growth ..................... 156
     5.4.2  ESR spectra ....................................... 157
     5.4.3  TD of a stalactite ................................ 159
     5.4.4  Age deduction from TD using U-series
            disequilibrium .................................... 161
     5.4.5  Charge transfer method: old sample dating with
            signal A .......................................... 162
     5.4.6  Suitable samples .................................. 162
     5.4.7  Examples in paleo-anmropology ..................... 163
5.5  Speleology study of caves and paleoenvironment ........... 164
     5.5.1  Radiation environment in a cave ................... 164
     5.5.2  Rainfall .......................................... 165
     5.5.3  Growth rate and temperature ....................... 167
     5.5.4  Cave pearls, flowstones and travertines ........... 167
5.6  Other calcium carbonates ................................. 168
     5.6.1  Spring deposits ................................... 168
     5.6.2  Calcrete .......................................... 168
     5.6.3  Stromatolite ...................................... 169
5.7  Technical notes .......................................... 169
5.8  Summary .................................................. 170

Chapter 6 CaCO3: Bicarbonates Fossils ......................... 177
6.1  Introduction ............................................. 178
6.2  Crystal structure and defects in aragonite CaCO3 ......... 179
     6.2.1  Crystal structure ................................. 179
     6.2.2  Radiation-induced defects ......................... 179
6.3  Fossil shells in sediments ............................... 181
     6.3.1  ESR spectra ....................................... 181
     6.3.2  Relative signal intensity and age ................. 182
     6.3.3  ED of shells ...................................... 184
     6.3.4  Radiation assessment .............................. 186
6.4  Corals on marine terraces ................................ 188
     6.4.1  Samples and localities ............................ 188
     6.4.2  ESR spectra and age determination ................. 190
     6.4.3  Spread of ESR ages in Barbados terraces ........... 195
     6.4.4  Conection factors: variation of trap
            concentration ..................................... 196
     6.4.5  Distribution of SO3 radicals (signal B) in a
            coral ............................................. 198
6.5  Deep-sea sediment: planktonie foraminifera ............... 200
6.6  Application in archaeology ............................... 202
     6.6.1  Shells from shell mounds .......................... 202
     6.6.2  Egg shells ........................................ 203
6.7  Technical notes .......................................... 204
6.8  Summary .................................................. 206

Chapter 7 Evaporites: Sulfates and Other Minerals ............. 211
7.1  Introduction ............................................. 212
7.2  Anhydrite CaSO4 , barite BaSO4  and celestite SrSO4 ...... 212
     7.2.1  Crystal structures ................................ 212
     7.2.2  ESR spectra and models of defects ................. 214
7.3  Gypsum CaSO42H2O ......................................... 218
     7.3.1  Crystal structure ................................. 218
     7.3.2  ESR spectra and models of defects ................. 219
     7.3.3  ESR dating of natural gypsum ...................... 223
     7.3.4  Distribution of radicals in a gypsum crystal ...... 226
7.4  Nahcolite NaHCO3 and halite NaC1 ......................... 227
     7.4.1  ESR spectra and defects in synthetic NaHCO3 ....... 227
     7.4.2  Searles Lake sediments ............................ 228
7.5  Nitrates, borates and other evaporites ................... 232
     7.5.1  Nitrates .......................................... 232
     7.5.2  Borates ........................................... 232
     7.5.3  Other minerals .................................... 232
7.6  Summary .................................................. 234

Chapter 8  Phosphates: Bioapatite for Anthropology ............ 237
8.1  Introduction ............................................. 238
8.2  Structure and defects in apatites ........................ 240
     8.2.1 Structure .......................................... 240
     8.2.2  ESR spectra and defects in synthetic apatites ..... 241
     8.2.3  Defects in bioapatites: bone and tooth ............ 245
8.3  ESR spectra and ED ....................................... 248
     8.3.1  ESR spectra of bones and teeth .................... 248
     8.3.2  ED and age relation: relative dating .............. 253
8.4  Uranium accumulation ..................................... 255
     8.4.1  Fossil bone ....................................... 255
     8.4.2  Tooth enamel ...................................... 256
     8.4.3  ESR isochron method ............................... 256
8.5  Effect of fluorination ................................... 257
8.6  ESR ages of bones and teeth in paleo-anthropology ........ 259
8.7  Other phosphates ......................................... 262
     8.7.1  Phosphate nodules ................................. 262
     8.7.2  Insular phosphorite ............................... 264
8.8  Technical note ........................................... 265
8.9  Summary .................................................. 265

Chapter 9  SiO2: Rocks, Faults and Sediments .................. 271
9.1  Introduction ............................................. 272
9.2  Crystal structure and defects in Si02 .................... 273
     9.2.1  Crystal structure of quartz ....................... 273
     9.2.2  Defects in SiO2: intrinsic defects ................ 274
     9.2.3  Impurity-associated defects ....................... 283
9.3  ESR dating of SiO2 from fault gouge ...................... 288
     9.3.1 ESR dating of quartz ............................... 288
     9.3.2  Formation of fault gouge and intrafault
            minerals .......................................... 288
     9.3.3  Basic considerations of dating of fault
            movement .......................................... 289
     9.3.4  Laboratory simulation of faulting ................. 292
9.4  Application to fault dating .............................. 294
     9.4.1  Initial works using the E'1 center ................ 294
     9.4.2  Dating with varions defects ....................... 297
     9.4.3  Mylonite with slickensides: recrystallization or
            melting ........................................... 300
9.5  Sediment Age ............................................. 301
     9.5.1  Optical bleaching? ................................ 301
     9.5.2  At center ......................................... 302
     9.5.3  Ge center ......................................... 303
     9.5.4  Change in the dose rate: a new sediment dating
            method ............................................ 303
9.6  E'1 center for Gigaannee Ga age .......................... 305
     9.6.1  Age versus E'1 intensity .......................... 305
     9.6.2  Oxygen vacancies and age .......................... 306
9.7  Shock-induced metamorphism: impact crater ................ 307
     9.7.1  Meteorite impact crater ........................... 307
     9.7.2  Impact experiment on SiO2 and crater sandstone .... 308
9.8  Technical note ........................................... 308
9.9  Summary .................................................. 309

Chapter 10 Silica and Silicates: Geo therm and Volcanism ...... 315
10.1 Introduction ............................................. 316
10.2 Growth of defect concentrations at geothermal areas ...... 317
     10.2.1 Saturation of defect concentration ................ 317
     10.2.2 Slow cooling to present temperature Tg ............ 318
     10.2.3 Closure temperature ............................... 318
10.3 Silica SiO2 .............................................. 320
     10.3.1 Volcanic rocks .................................... 320
     10.3.2 Geothermal silica ................................. 322
     10.3.3 Hornfels and igneous metamorphism: intrusive
            rock .............................................. 325
     10.3.4 Organic radicals in chert ......................... 327
10.4 Zircon ZrSiO4 ............................................ 329
     10.4.1 Crystal structure and models of defects ........... 329
     10.4.2 ESR dating of Zircon .............................. 332
10.5 Feldspars ................................................ 333
     10.5.1 Structures and models of defects .................. 333
     10.5.2 Plagioclase: volcanic ash ......................... 336
10.6 Gay minerals ............................................. 337
     10.6.1 Structures ........................................ 337
     10.6.2 ESR spectra and models of defects ................. 338
     10.6.3 Kaolinite as a paleodosimeter: past contact with
            radionuclides ..................................... 341
10.7 Magnetic minerals and impurities ......................... 342
     10.7.1 ESR spectra of iron minerals ...................... 342
     10.7.2 State of Fe3+ impurities .......................... 344
     10.7.3 Paramagnetic impurities in clay minerals .......... 344
     10.7.4 Volcanic materials and lunar soils ................ 345
10.8 Fe3+ and Mn2+ in ceramics ................................ 347
     10.8.1 Surface oxidation ................................. 347
     10.8.2 Diffusion of Mn2+ from environment ................ 348
     10.8.3 Ancient technology of ceramics .................... 348
10.9 Technical note ........................................... 349
     10.10 Summary ............................................ 350

Chapter 11 Solid H2O and CO2: Space and Environmental
Sciences ...................................................... 355
11.1 Introduction ............................................. 356
11.2 Solid H2O ................................................ 358
     11.2.1 Structures and models of defects .................. 358
     11.2.2 Lifetime of defects at ambient temperature ........ 361
     11.2.3 Growth curve of ·Н radicals ....................... 362
     11.2.4 Environmental Sciences ............................ 364
11.3 Solid CO2 ................................................ 364
     11.3.1 Structure and models of defects ................... 364
     11.3.2 Lifetime of defects ............................... 365
11.4 Solid methane CH4 and other solids ....................... 366
     11.4.1 Solid CH4 ......................................... 366
     11.4.2 Other solids ...................................... 369
     11.4.3 Magnetic resonance in space? ...................... 370
11.5 Summary .................................................. 370

Chapter 12 Chemical ESR Dating: Organic Materials ............. 373
12.1 Introduction ............................................. 374
12.2 Principle of chemical ESR dating ......................... 374
     12.2.1 Rate equation ..................................... 375
     12.2.2 Graphic analysis of chemical formation and decay .. 376
     12.2.3 Time machine to accelerate a reaction ............. 377
     12.2.4 Light-induced reaction: photochemical ESR dating .. 377
12.3 Organic radicals ......................................... 379
     12.3.1 Manufactured date of potato chips ................. 379
     12.3.2 Dead body and fur: forensic science ............... 380
     12.3.3 Leather and mummy: archaeometry ................... 381
12.4 Forensic science: oxidation of bloodstain ................ 383
12.5 Historical materials ..................................... 384
     12.5.1 Historical papers and cellulose: preservation
             science .......................................... 384
     12.5.2 Silk, wool and Japanese lacquer ................... 388
12.6 Agricultural products .................................... 389
     12.6.1 Coffee beans: quality assessment .................. 389
     12.6.2 Thermal history of cereal grains: new
            archaeology ....................................... 389
12.7 Coal and petroleum engine oil ............................ 390
     12.7.1 Coal and petroleum ................................ 390
     12.7.2 Engine oil: mileage determination ................. 391
12.8 Summary .................................................. 392

Chapter 13 ESR Dosimetry: Dosimeter, Accident and Foodstuffs .. 395
13.1 Introduction ............................................. 396
13.2 Principle of ESR dosimetry ............................... 397
     13.2.1 ESR radical dosimeters ............................ 397
     13.2.2 Dosimetry with natural rock ....................... 400
13.3 Gamma- and X-ray dosimeters .............................. 401
     13.3.1 Alanine, sugar and other organice ................. 401
     13.3.2 Apatite and biological materials .................. 404
     13.3.3 Radiation quality effect .......................... 405
13.4 Neutron and high linear energy transfer LET dosimetry .... 407
13.5 A-bomb radiation dosimetry ............................... 408
     13.5.1 A-bomb dose rййvaluation .......................... 408
     13.5.2 Tooth enamel of A-bomb survivors .................. 409
     13.5.3 Shell buttons ..................................... 411
     13.5.4 Dosimetry with quartz in granite bridge pillar .... 413
     13.5.5 High dose rate effect: A-bomb or accident
            radiation ......................................... 415
13.6 Accident dosimetry ....................................... 415
     13.6.1 Chernobyl resident teeth: hot spot or artifact? ... 415
     13.6.2 Dosimetry of sugar at Chernobyl home .............. 417
13.7 Dosimetry for food irradiation ........................... 418
13.8 Summary .................................................. 419

Chapter 14 ESR Microscopy: Scanning Imaging of Spin Density ... 427
14.1 Introduction ............................................. 428
14.2 CT-ESR Imaging ........................................... 429
     14.2.1 Field gradient method ............................. 429
     14.2.2 Field gradient coils in a cavity: 1-D microscope .. 430
     14.2.3 Field gradient wires in a cavity: 2-D microscope .. 432
     14.2.4 ESR imaging application using field gradient ...... 438
14.3 Scanning the localized field ............................. 439
     14.3.1 Mechanical scanning of modulation field ........... 439
     14.3.2 Electronic scanning of static magnetic field ...... 441
14.4 Localized microwave field ................................ 444
     14.4.1 Simple microwave scanning ESR ..................... 444
     14.4.2 Deconvolution method .............................. 444
14.5 Distribution of paramagnetic ions ........................ 447
     14.5.1 Fossils of crinoids and ammonites ................. 447
     14.5.2 Reactive centers on catalysts: valency changes .... 448
14.6 Crystals: impurity distribution .......................... 449
     14.6.1 Synthetic diamond: growth sector .................. 449
     14.6.2 Distribution of Gd3+ and radioactive elements ..... 451
     14.6.3 Crystal axis orientation .......................... 452
14.7 Dosimetric image ......................................... 454
     14.7.1 Microdosimetry of minerals ........................ 454
     14.7.2 Radiation dose image in human teeth ............... 454
     14.7.3 ESR imaging plate ................................. 454
14.8 Semiconductor, bioscience and new apparatus .............. 456
     14.8.1 Dangling bonds on poly-Si CVD film: annealing
            image ............................................. 456
     14.8.2 Biological application ............................ 458
     14.8.3 Can one detect a single spin? STM-ESR ............. 458
14.9 Summary .................................................. 459

Appendix ...................................................... 465
A.1  Theory of defect formation and decay ..................... 465
     A.1.l First and second mixed-order annealing ............. 465
     A.1.2 General solution for natural growth: formation
           and decay .......................................... 465
     A.1.3 A new method of additive dose: growth curve ........ 467
     A.1.4 Defect formation by natural α-rays ................. 468
A.2  Molecular orbital schemes ................................ 471
     A.2.1 AB2-type molecules ................................. 471
     A.2.2 AB3-type molecules ................................. 472
     A.2.3 AB4-type molecules ................................. 473
A.3  Portable ESR spectrometer for teaching ................... 474
     A.3.1 A spectrometer with a permanent magnet ............. 474
     A.3.2 Magnetic resonance imaging MRT experiment .......... 476
A.4  ESR reader for dosimetry and automatic sample changer .... 478
     A.4.1 Compact ESR reader ................................. 478
     A.4.2 Automatic sample changer ........................... 478
A.5  Nondestructive ESR for a large object .................... 480
     A.5.1  Forgery detection and provenance study ............ 480
     A.5.2  Applications ...................................... 481
     A.5.3  In-vivo oral dosimeter ............................ 482

Index ......................................................... 485


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:50 2019. Размер: 30,391 bytes.
Посещение N 1657 c 23.07.2013