Preface to the Second Edition ................................. iii
Preface to the First Edition .................................. vii
Contributors ................................................... xv
1 X-ray Physics ................................................ 1
Andrzej A. Markowicz
I Introduction ............................................ 1
II History ................................................. 1
III General Features ........................................ 2
IV Emission of Continuous Radiation ........................ 3
V Emission of Characteristic X-rays ....................... 7
VI Interaction of Photons with Matter ..................... 17
VII Intensity of Characteristic X-rays ..................... 31
VIII IUPAC Notation for X-ray Spectroscopy .................. 34
Appendixes
I Critical Absorption Wavelengths and Critical
Absorption Energies .................................... 36
II Characteristic X-ray Wavelengths (A) and Energies
(keV) .................................................. 40
III Radiative Transition Probabilities ..................... 49
IV Natural Widths of К and L Levels and Kα X-ray Lines
(FWHM), in eV .......................................... 53
V Wavelengths of К Satellite Lines (Å) ................... 56
VI Fluorescence Yields and Coster-Kronig Transition
Probabilities .......................................... 58
VII Coefficients for Calculating the Photoelectric
Absorption Cross Sections τ (Barns/Atom) Via ln-ln
Representation ......................................... 68
VIII Coefficients for Calculating the Incoherent Collision
Cross Sections σc (Barns/Atom) Via the ln-ln
Representation ......................................... 74
IX Coefficients for Calculating the Coherent Scattering
Cross Sections σR (Barns/Atom) Via the ln-ln
Representation ......................................... 76
X Parameters for Calculating the Total Mass Attenuation
Coefficients in the Energy Range 0.1-1000 keV [Via
Eq. (78)] .............................................. 78
XI Total Mass Attenuation Coefficients for Low-Energy
Ka. Lines .............................................. 87
XII Correspondence Between Old Siegbahn and New IUPAC
Notation X-ray Diagram Lines ........................... 91
References .................................................. 92
2 Wavelength-Dispersive X-ray Fluorescence .................... 95
Jozef A. Helsen and Andrzej Kuczumow
I Introduction ........................................... 95
II Fundamentals of Wavelength Dispersion ................. 100
III Layout of a Spectrometer .............................. 104
IV Qualitative and Quantitative Analysis ................. 150
V Chemical Shift and Speciation ......................... 169
VI Instrumentation ....................................... 173
VII Future Prospects ...................................... 189
References ................................................. 191
3 Energy-Dispersive X-ray Fluorescence Analysis Using X-ray
Tube Excitation ............................................ 199
Andrew T. Ellis
I Introduction .......................................... 199
II X-ray Tube Excitation Systems ......................... 200
III Semiconductor Detectors ............................... 214
IV Semiconductor Detector Electronics .................... 230
V Summary ............................................... 236
References ................................................. 236
4 Spectrum Evaluation ........................................ 239
Piet Van Espen
I Introduction .......................................... 239
II Fundamental Aspects ................................... 240
III Spectrum Processing Methods ........................... 245
IV Continuum Estimation Methods .......................... 260
V Simple Net Peak Area Determination .................... 264
VI Least-Squares Fitting Using Reference Spectra ......... 268
VII Least-Squares Fitting Using Analytical Functions ...... 278
VIII Methods Based on the Monte Carlo Technique ............ 300
IX The Least-Squares-Fitting Method ...................... 306
X Computer Implementation of Various Algorithms ......... 315
References ................................................. 336
5 Quantification of Infinitely Thick Specimens by XRF
Analysis ................................................... 341
Johan L. de Vries and Bruno A.R. Vrebos
I Introduction .......................................... 341
II Correlation Between Count Rate and Specimen
Composition ........................................... 343
III Factors Influencing the Accuracy of the Intensity
Measurement ........................................... 350
IV Calibration and Standard Specimens .................... 359
V Converting Intensities to Concentration ............... 362
VI Conclusion ............................................ 402
References ................................................. 403
6 Quantification in XRF Analysis of Intermediate-Thickness
Samples .................................................... 407
Andrzej A. Markowicz and René E. Van Grieken
I Introduction .......................................... 407
II Emission-Transmission Method .......................... 408
III Absorption Correction Methods Via Scattered Primary
Radiation ............................................. 415
IV Quantitation for Intermediate-Thickness Granular
Specimens ............................................. 423
References ................................................. 430
7 Radioisotope-Excited X-ray Analysis ........................ 433
Stanislaw Piorek
I Introduction .......................................... 433
II Basic Equations ....................................... 435
III Radioisotope X-ray Sources and Detectors .............. 442
IV X-ray and y-ray Techniques ............................ 456
V Factors Affecting the Overall Accuracy of XRF
Analysis .............................................. 469
VI Applications .......................................... 474
VII Future of Radioisotope-Excited XRF Analysis ........... 495
VIII Conclusions ........................................... 496
Appendix: List of Companies that Manufacture
Radioisotope-Based X-ray Analyzers and Systems ........ 497
References ................................................. 498
8 Synchrotron Radiation-Induced X-ray Emission ............... 501
Keith W. Jones
I Introduction .......................................... 501
II Properties of Synchrotron Radiation ................... 503
III Description of Synchrotron Facilities ................. 506
IV Apparatus for X-ray Microscopy ........................ 507
V Continuum and Monochromatic Excitation ................ 523
VI Quantitation .......................................... 524
VII Sensitivities and Minimum Detection Limits ............ 525
VIII Beam-Induced Damage ................................... 530
IX Applications of SRIXE ................................. 532
X Tomography ............................................ 542
XI EXAFS and XANES ....................................... 545
XII Future Directions ..................................... 551
References ................................................. 555
9 Total Reflection X-ray Fluorescence ........................ 559
Peter Kregsamer, Christina Streli, and Peter Wobrauschek
I Introduction .......................................... 559
II Physical Principles ................................... 560
III Instrumentation ....................................... 567
IV Chemical Analysis ..................................... 574
V Surface Analysis ...................................... 583
VI Thin Films and Depth Profiles ......................... 588
VII Synchrotron Radiation Excitation ...................... 590
VIII Light Elements ........................................ 595
IX Related Techniques .................................... 597
References ................................................. 599
10 Polarized Beam X-ray Fluorescence Analysis ................. 603
Joachim Heckel and Richard W. Ryon
I Introduction .......................................... 603
II Theory ................................................ 605
III Barkla Systems ........................................ 610
IV Bragg Systems ......................................... 618
V Barkla-Bragg Combination Systems ...................... 627
VI Secondary Targets ..................................... 627
VII Conclusion ............................................ 628
References ................................................. 629
11 Microbeam XRF .............................................. 631
Anders Rindby and Koen H.A. Janssens
I Introduction and Historical Perspective ............... 631
II Theoretical Background ................................ 637
III Instrumentation for Microbeam XRF ..................... 646
IV Collection and Processing of μ-XRF Data ............... 667
V Applications .......................................... 696
References ................................................. 712
12 Particle-Induced X-ray Emission Analysis ................... 719
Willy Maenhaut and Klas G. Malmqvist
I Introduction .......................................... 719
II Interactions of Charged Particles with Matter,
Characteristic X-ray Production, and Continuous
Photon Background Production .......................... 720
III Instrumentation ....................................... 727
IV Quantitation, Detection Limits, Accuracy, and
Precision ............................................. 739
V Sample Collection and Sample and Specimen
Preparation for PIXE Analysis ......................... 748
VI Applications .......................................... 750
VII Complementary Ion-Beam-Analysis Techniques ............ 783
VIII Conclusions ........................................... 792
References ................................................. 797
13 Electron-Induced X-ray Emission ............................ 811
John A. Small, Dale E. Newbury, and John T. Armstrong
I Introduction .......................................... 811
II Quantitative Analysis ................................. 816
III Microanalysis at Low Electron Beam Energy ............. 857
IV Analysis of Samples with Nonstandard Geometries ....... 876
V Spatially Resolved X-ray Analysis ..................... 909
References ................................................. 926
14 Sample Preparation for X-ray Fluorescence .................. 933
Martina Schmeling and René E. Van Grieken
I Introduction .......................................... 933
II Solid Samples ......................................... 934
III Fused Specimen ........................................ 944
IV Liquid Specimen ....................................... 948
V Biological Samples .................................... 958
VI Atmospheric Particles ................................. 965
VII Sample Support Materials .............................. 968
References ................................................. 970
Index ......................................................... 977
|