Toro E.F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction (Berlin; Heidelberg, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаToro E.F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. - 3rd ed. - Berlin; Heidelberg: Springer, 2010. - xxiv, 724 p.: ill. - Ref.: p.687-718. - Ind.: p.719-724. - ISBN 978-3-642-06438-8
 

Оглавление / Contents
 
Preface to the First Edition .................................. VII
Preface to the Third Edition ................................... XI
1  The Equations of Fluid Dynamics .............................. 1
   1.1  The Euler Equations ..................................... 2
        1.1.1  Conservation-Law Form ............................ 3
        1.1.2  Other Compact Forms .............................. 4
   1.2  Thermodynamic Considerations ............................ 5
        1.2.1  Units of Measure ................................. 5
        1.2.2  Equations of State (EOS) ......................... 6
        1.2.3  Other Variables and Relations .................... 7
        1.2.4  Ideal Gases ..................................... 11
        1.2.5  Covolume and van der Waal Gases ................. 13
   1.3  Viscous Stresses ....................................... 15
   1.4  Heat Conduction ........................................ 17
   1.5  Integral Form of the Equations ......................... 18
        1.5.1  Time Derivatives ................................ 19
        1.5.2  Conservation of Mass ............................ 20
        1.5.3  Conservation of Momentum ........................ 21
        1.5.4  Conservation of Energy .......................... 23
   1.6  Submodels .............................................. 25
        1.6.1  Summary of the Equations ........................ 25
        1.6.2  Flow with Area Variation ........................ 27
        1.6.3  Axi-Symmetric Flows ............................. 28
        1.6.4  Cylindrical and Spherical Symmetry .............. 29
        1.6.5  Plain One-Dimensional Flow ...................... 29
        1.6.6  Steady Compressible Flow ........................ 31
        1.6.7  Viscous Compressible Flow ....................... 33
        1.6.8  Free-Surface Gravity Flow ....................... 33
        1.6.9  The Shallow Water Equations ..................... 35
        1.6.1  Incompressible Viscous Flow ..................... 38
        1.6.2  The Artificial Compressibility Equations ........ 39
2  Notions on Hyperbolic Partial Differential Equations ........ 41
   2.1  Quasi-Linear Equations: Basic Concepts ................. 42
   2.2  The Linear Advection Equation .......................... 47
        2.2.1  Characteristics and the General Solution ........ 47
        2.2.2  The Riemann Problem ............................. 49
   2.3  Linear Hyperbolic Systems .............................. 50
        2.3.1  Diagonalisation and Characteristic Variables .... 51
        2.3.2  The General Initial-Value Problem ............... 52
        2.3.3  The Riemann Problem ............................. 55
        2.3.4  The Riemann Problem for Linearised Gas
               Dynamics ........................................ 58
        2.3.5  Some Useful Definitions ......................... 60
   2.4  Conservation Laws ...................................... 61
        2.4.1  Integral Forms of Conservation Laws ............. 62
        2.4.2  Non-Linearities and Shock Formation ............. 66
        2.4.3  Characteristic Fields ........................... 77
        2.4.4  Elementary-Wave Solutions of the Riemann
               Problem ......................................... 83
3  Some Properties of the Euler Equations ...................... 87
   3.1  The One-Dimensional Euler Equations .................... 87
        3.1.1  Conservative Formulation ........................ 87
        3.1.2  Non-Conservative Formulations ................... 91
        3.1.3  Elementary Wave Solutions of the Riemann
               Problem ......................................... 94
   3.2  Multi-Dimensional Euler Equations ..................... 103
        3.2.1  Two-Dimensional Equations in Conservative
               Form ........................................... 104
        3.2.2  Three-Dimensional Equations in Conservative
                Form .......................................... 108
        3.2.3  Three-Dimensional Primitive Variable
               Formulation .................................... 109
        3.2.4  The Split Three-Dimensional Riemann Problem .... 111
   3.3  Conservative Versus Non-Conservative Formulations ..... 112
4  The Riemann Problem for the Euler Equations ................ 115
   4.1  Solution Strategy ..................................... 116
   4.2  Equations for Pressure and Particle Velocity .......... 119
        4.2.1  Function ƒL for a Left Shock ................... 120
        4.2.2  Function ƒL for Left Rarefaction ............... 122
        4.2.3  Function ƒR for a Right Shock .................. 123
        4.2.4  Function ƒR for a Right Rarefaction ............ 124
   4.3  Numerical Solution for Pressure ....................... 125
        4.3.1  Behaviour of the Pressure Function ............. 125
        4.3.2  Iterative Scheme for Finding the Pressure ...... 127
        4.3.3  Numerical Tests ................................ 129
   4.4  The Complete Solution ................................. 132
   4.5  Sampling the Solution ................................. 136
        4.5.1  Left Side of Contact: S = x/t ≤ u* ............. 137
        4.5.2  Right Side of Contact: S = x/t ≥ u* ............ 137
   4.6  The Riemann Problem in the Presence of Vacuum ......... 139
        4.6.1  Case 1: Vacuum Right State ..................... 140
        4.6.2  Case 2: Vacuum Left State ...................... 142
        4.6.3  Case 3: Generation of Vacuum ................... 142
   4.7  The Riemann Problem for Covolume Gases ................ 143
        4.7.1  Solution for Pressure and Particle Velocity .... 144
        4.7.2  Numerical Solution for Pressure ................ 147
        4.7.3  The Complete Solution .......................... 147
        4.7.4  Solution Inside Rarefactions ................... 148
   4.8  The Split Multi-Dimensional Case ...................... 149
   4.9  FORTRAN Program for Exact Riemann Solver .............. 151
5  Notions on Numerical Methods ............................... 163
   5.1  Discretisation: Introductory Concepts ................. 163
        5.1.1  Approximation to Derivatives ................... 164
        5.1.2  Finite Difference Approximation to a PDE ....... 165
   5.2  Selected Difference Schemes ........................... 168
        5.2.1  The First Order Upwind Scheme .................. 168
        5.2.2  Other Weil-Known Schemes ....................... 172
   5.3  Conservative Methods .................................. 174
        5.3.1  Basic Definitions .............................. 175
        5.3.2  Godunov's First-Order Upwind Method ............ 177
        5.3.3  Godunov's Method for Burgers's Equation ........ 181
        5.3.4  Conservative Form of Difference Schemes ........ 184
   5.4  Upwind Schemes for Linear Systems ..................... 187
        5.4.1  The CIR Scheme ................................. 188
        5.4.2  Godunov's Method ............................... 190
   5.5  Sample Numerical Results .............................. 194
        5.5.1  Linear Advection ............................... 194
        5.5.2  The Inviscid Burgers Equation .................. 196
   5.6  FORTRAN Program for Godunov's Method .................. 196
6  The Method of Godunov for Non-linear Systems ............... 213
   6.1  Bases of Godunov's Method ............................. 213
   6.2  The Godunov Scheme .................................... 216
   6.3  Godunov's Method for the Euler Equations .............. 218
        6.3.1  Evaluation of the Intercell Fluxes ............. 219
        6.3.2  Time Step Size ................................. 221
        6.3.3  Boundary Conditions ............................ 222
   6.4  Numerical Results and Discussion ...................... 225
        6.4.1  Numerical Results for Godunov's Method ......... 226
        6.4.2  Numerical Results from Other Methods ........... 228
7  Random Choice and Related Methods .......................... 237
   7.1  Introduction .......................................... 237
   7.2  RCM on a Non-Staggered Grid ........................... 238
        7.2.1  The Scheme for Non-Linear Systems .............. 239
        7.2.2  Boundary Conditions and the Time Step Size ..... 243
   7.3  A Random Choice Scheme of the Lax-Friedrichs Type ..... 244
        7.3.1  Review of the Lax-Friedrichs Scheme ............ 244
        7.3.2  The Scheme ..................................... 245
   7.4  The RCM on a Staggered Grid ........................... 247
        7.4.1  The Scheme for Non-Linear Systems .............. 247
        7.4.2  A Deterministic First-Order Centred Scheme
               (force) ........................................ 247
        7.4.3  Analysis of the force Scheme ................... 249
   7.5  Random Numbers ........................................ 250
        7.5.1  Van der Corput Pseudo-Random Numbers ........... 250
        7.5.2  Statistical Properties ......................... 251
        7.5.3  Propagation of a Single Shock .................. 253
   7.6  Numerical Results ..................................... 255
   7.7  Concluding Remarks .................................... 256
8  Flux Vector Splitting Methods .............................. 265
   8.1  Introduction .......................................... 265
   8.2  The Flux Vector Splitting Approach .................... 266
        8.2.1  Upwind Differencing ............................ 266
        8.2.2  The FVS Approach ............................... 268
   8.3  FVS for the Isothermal Equations ...................... 270
        8.3.1  Split Fluxes ................................... 271
        8.3.2  FVS Numerical Schemes .......................... 272
   8.4  FVS Applied to the Euler Equations .................... 273
        8.4.1  Recalling the Equations ........................ 274
        8.4.2  The Steger-Warming Splitting ................... 276
        8.4.3  The van Leer Splitting ......................... 277
        8.4.4  The Liou-Steffen Scheme ........................ 278
   8.5  Numerical Results ..................................... 280
        8.5.1  Tests .......................................... 280
        8.5.2  Results for Test 1 ............................. 280
        8.5.3  Results for Test 2 ............................. 281
        8.5.4  Results for Test 3 ............................. 281
        8.5.5  Results for Test 4 ............................. 282
        8.5.6  Results for Test 5 ............................. 282
9  Approximate—State Riemann Solvers .......................... 293
   9.1  Introduction .......................................... 293
   9.2  The Riemann Problem and the Godunov Flux .............. 294
        9.2.1  Tangential Velocity Components ................. 296
        9.2.2  Sonic Rarefactions ............................. 296
   9.3  Primitive Variable Riemann Solvers (PVRS) ............. 297
   9.4  Approximations Based on the Exact Solver .............. 301
        9.4.1  A Two-Rarefaction Riemann Solver (TRRS) ........ 301
        9.4.2  A Two-Shock Riemann Solver (TSRS) .............. 303
   9.5  Adaptive Riemann Solvers .............................. 304
        9.5.1  An Adaptive Iterative Riemann Solver (AIRS) .... 304
        9.5.2  An Adaptive Noniterative Riemann Solver
               (ANRS) ......................................... 305
   9.6  Numerical Results ..................................... 306
10 The HLL and HLLC Riemann Solvers ........................... 315
   10.1 Introduction .......................................... 315
   10.2 The Riemann Problem ................................... 317
        10.2.1 The Godunov Flux ............................... 317
        10.2.2 Integral Relations ............................. 318
   10.3 The HLL Approximate Riemann Solver .................... 320
   10.4 The HLLC Approximate Riemann Solver ................... 322
        10.4.1 Useful Relations ............................... 322
        10.4.2 The HLLC Flux for the Euler Equations .......... 324
        10.4.3 Multidimensional and Multicomponent Flow ....... 326
   10.5 Wave-Speed Estimates .................................. 327
        10.5.1 Direct Wave Speed Estimates .................... 328
        10.5.2 Pressure-Based Wave Speed Estimates ............ 329
   10.6 Summary of HLLC Fluxes ................................ 331
   10.7 Contact Waves and Passive Scalars ..................... 333
   10.8 Numerical Results ..................................... 334
   10.9 Closing Remarks ....................................... 336
11 The Riemann Solver of Roe .................................. 345
   11.1 Bases of the Roe Approach ............................. 346
        11.1.1 The Exact Riemann Problem and the Godunov
               Flux ........................................... 346
        11.1.2 Approximate Conservation Laws .................. 347
        11.1.3 The Approximate Riemann Problem and the
               Intercell Flux ................................. 349
   11.2 The Original Roe Method ............................... 351
        11.2.1 The Isothermal Equations ....................... 352
        11.2.2 The Euler Equations ............................ 354
   11.3 The Roe-Pike Method ................................... 358
        11.3.1 The Approach ................................... 358
        11.3.2 The Isothermal Equations ....................... 359
        11.3.3 The Euler Equations ............................ 363
   11.4 An Entropy Fix ........................................ 366
        11.4.1 The Entropy Problem ............................ 366
        11.4.2 The Harten-Hyman Entropy Fix ................... 367
        11.4.3 The Speeds u*, a*L, а*R ........................ 370
   11.5 Numerical Results and Discussion ...................... 372
        11.5.1 The Tests ...................................... 372
        11.5.2 The Results .................................... 373
   11.6 Extensions ............................................ 373
12 The Riemann Solver of Osher ................................ 377
   12.1 Osher's Scheme for a General System ................... 378
        12.1.1 Mathematical Bases ............................. 378
        12.1.2 Osher's Numerical Flux ......................... 380
        12.1.3 Osher's Flux for the Single-Wave Case .......... 381
        12.1.4 Osher's Flux for the Inviscid Burgers
               Equation ....................................... 383
        12.1.5 Osher's Flux for the General Case .............. 384
   12.2 Osher's Flux for the Isothermal Equations ............. 385
        12.2.1 Osher's Flux with P-Ordering ................... 386
        12.2.2 Osher's Flux with O-Ordering ................... 389
   12.3 Osher's Scheme for the Euler Equations ................ 392
        12.3.1 Osher's Flux with P-Ordering ................... 393
        12.3.2 Osher's Flux with O-Ordering ................... 397
        12.3.3 Remarks on Path Orderings ...................... 402
        12.3.4 The Split Three-Dimensional Case ............... 403
   12.4 Numerical Results and Discussion ...................... 404
   12.5 Extensions ............................................ 406
13 High-Order and TVD Methods for Scalar Equations ............ 413
   13.1 Introduction .......................................... 413
   13.2 Basic Properties of Selected Schemes .................. 415
        13.2.1 Selected Schemes ............................... 415
        13.2.2 Accuracy ....................................... 417
        13.2.3 Stability ...................................... 418
   13.3 WAF-Type High Order Schemes ........................... 420
        13.3.1 The Basic waf Scheme ........................... 420
        13.3.2 Generalisations of the waf Scheme .............. 423
   13.4 MUSCL-Type High-Order Methods ......................... 426
        13.4.1 Data Reconstruction ............................ 426
        13.4.2 The MUSCL-Hancock Method (MHM) ................. 429
        13.4.3 The Piece-Wise Linear Method (PLM) ............. 432
        13.4.4 The Generalised Riemann Problem (GRP) Method ... 434
        13.4.5 Slope-Limiter Centred (SLIC) Schemes ........... 436
        13.4.6 Other Approaches ............................... 439
        13.4.7 Semi-Discrete Schemes .......................... 439
        13.4.8 Implicit Methods ............................... 439
   13.5 Monotone Schemes and Accuracy ......................... 440
        13.5.1 Monotone Schemes ............................... 440
        13.5.2 A Motivating Example ........................... 443
        13.5.3 Monotone Schemes and Godunov's Theorem ......... 447
        13.5.4 Spurious Oscillations and High Resolution ...... 448
        13.5.5 Data Compatibility ............................. 449
   13.6 Total Variation Diminishing (TVD) Methods ............. 451
        13.6.1 The Total Variation ............................ 452
        13.6.2 TVD and Monotonicity Preserving Schemes ........ 453
   13.7 Flux Limiter Methods .................................. 456
        13.7.1  TVD Version of the waf Method ................. 456
        13.7.2 The General Flux-Limiter Approach .............. 464
        13.7.3 TVD Upwind Flux Limiter Schemes ................ 469
        13.7.4 TVD Centred Flux Limiter Schemes ............... 474
   13.8 Slope Limiter Methods ................................. 480
        13.8.1 TVD Conditions ................................. 480
        13.8.2 Construction of TVD Slopes ..................... 481
        13.8.3 Slope Limiters ................................. 482
        13.8.4 Limited Slopes Obtained from Flux Limiters ..... 484
   13.9 Extensions of TVD Methods ............................. 486
        13.9.1 TVD Schemes in the Presence of Source Terms .... 486
        13.9.2 TVD Schemes in the Presence of Diffusion
               Terms .......................................... 486
   13.10 Numerical Results for Linear Advection ............... 487
14 High-Order and TVD Schemes for Non-Linear Systems .......... 493
   14.1  Introduction ......................................... 493
   14.2  CFL and Boundary Conditions .......................... 495
   14.3  Weighted Average Flux (WAF) Schemes .................. 496
        14.3.1 The Original Version of WAF .................... 496
        14.3.2 A Weighted Average State Version ............... 498
        14.3.3 Rarefactions in State Riemann Solvers .......... 499
        14.3.4 TVD Version of waf Schemes ..................... 501
        14.3.5 Riemann Solvers ................................ 503
        14.3.6 Summary of the waf Method ...................... 503
   14.4 The MUSCL-Hancock Scheme .............................. 504
        14.4.1 The Basic Scheme ............................... 504
        14.4.2 A Variant of the Scheme ........................ 506
        14.4.3 TVD Version of the Scheme ...................... 507
        14.4.4 Summary of the MUSCL-Hancock Method ............ 510
   14.5 Centred TVD Schemes ................................... 511
        14.5.1 Review of the force Flux ....................... 512
        14.5.2 A Flux Limiter Centred (FLIC) Scheme ........... 512
        14.5.3 A Slope Limiter Centred (SLIC) Scheme .......... 514
   14.6 Primitive-Variable Schemes ............................ 515
        14.6.1 Formulation of the Equations and Primitive
               Schemes ........................................ 515
        14.6.2 A WAF-Type Primitive Variable Scheme ........... 517
        14.6.3 A MUSCL-Hancock Primitive Scheme ............... 520
        14.6.4 Adaptive Primitive-Conservative Schemes ........ 522
   14.7 Some Numerical Results ................................ 523
        14.7.1 Upwind TVD Methods ............................. 523
        14.7.2 Centred TVD Methods ............................ 524
15 Splitting Schemes for PDEs with Source Terms ............... 531
   15.1 Introduction .......................................... 531
   15.2 Splitting for a Model Equation ........................ 533
   15.3 Numerical Methods Based on Splitting .................. 535
        15.3.1 Model Equations ................................ 535
        15.3.2 Schemes for Systems ............................ 536
   15.4 Remarks on ODE Solvers ................................ 537
        15.4.1 First-Order Systems of ODEs .................... 537
        15.4.2 Numerical Methods .............................. 539
        15.4.3 Implementation Details for Split Schemes ....... 540
   15.5 Concluding Remarks .................................... 541
16 Methods for Multi-Dimensional PDEs ......................... 543
   16.1 Introduction .......................................... 543
   16.2 Dimensional Splitting ................................. 544
        16.2.1 Splitting for a Model Problem .................. 544
        16.2.2 Splitting Schemes for Two-Dimensional Systems .. 545
        16.2.3 Splitting Schemes for Three-Dimensional
               Systems ........................................ 547
   16.3 Practical Implementation of Splitting Schemes in
        Three Dimensions ...................................... 549
        16.3.1 Handling the Sweeps by a Single Subroutine ..... 549
        16.3.2 Choice of Time Step Size ....................... 551
        16.3.3 The Intercell Flux and the tvd Condition ....... 552
   16.4 Unsplit Finite Volume Methods ......................... 555
        16.4.1 Introductory Concepts .......................... 555
        16.4.2 Accuracy and Stability of Multidimensional
               Schemes ........................................ 558
   16.5 A MusCL-Hancock Finite Volume Scheme .................. 561
   16.6 WAF-Type Finite Volume Schemes ........................ 563
        16.6.1 Two-Dimensional Linear Advection ............... 564
        16.6.2 Three-Dimensional Linear Advection ............. 567
        16.6.3 Schemes for Two-Dimensional Nonlinear
               Systems ........................................ 570
        16.6.4 Schemes for Three-Dimensional Nonlinear
               Systems ........................................ 573
   16.7 Non-Cartesian Geometries .............................. 574
        16.7.1 Introduction ................................... 574
        16.7.2 General Domains and Coordinate
               Transformation ................................. 575
        16.7.3 The Finite Volume Method for Non-Cartesian
               Domains ........................................ 578
17 Multidimensional Test Problems ............................. 585
   17.1 Explosions and Implosions ............................. 586
        17.1.1 Explosion Test in Two-Space Dimensions ......... 587
        17.1.2 Explosion Test in Three Space Dimensions ....... 590
   17.2 Shock Wave Reflection from a Wedge .................... 591
18 FORCE Fluxes in Multiple Space Dimensions .................. 597
   18.1 Introduction .......................................... 597
   18.2 Review of FORCE in One Space Dimension ................ 600
        18.2.1 FORCE and Related Fluxes ....................... 600
        18.2.2 Monotonicity and Numerical Viscosity ........... 602
   18.3 FORCE Schemes on Cartesian Meshes ..................... 605
        18.3.1 The Two-Dimensional Case ....................... 605
        18.3.2 The Three-Dimensional Case ..................... 609
   18.4 Properties of the FORCE Schemes ....................... 610
        18.4.1 One-Dimensional Interpretation ................. 610
        18.4.2 Some Numerical Experiments ..................... 611
        18.4.3 Analysis in Multiple Space Dimensions .......... 613
   18.5 FORCE Schemes on General Meshes ....................... 617
   18.6 Sample Numerical Results .............................. 621
   18.7 Concluding Remarks .................................... 621
19 The Generalized Riemann Problem ............................ 625
   19.1 Introduction .......................................... 625
   19.2 Statement of the Problem .............................. 629
   19.3 The Cauchy-Kowalewski Theorem ......................... 631
        19.3.1 Series Expansions and Analytic Functions ....... 632
        19.3.2 Illustration of the Cauchy-Kowalewski
               Theorem ........................................ 633
        19.3.3 The Cauchy-Kowalewski Method ................... 633
   19.4 A Method of Solution .................................. 635
        19.4.1 The Leading Term ............................... 636
        19.4.2 Higher-Order Terms ............................. 637
        19.4.3 Source Terms ................................... 640
        19.4.4 Summary: Numerical Flux and Numerical Source ... 640
        19.4.5 Some remarks ................................... 642
   19.5 Examples .............................................. 642
        19.5.1 The Linear Advection Equation .................. 643
        19.5.2 Linear Advection with a Source Term ............ 645
        19.5.3 Non-Linear Equation with a Source Term ......... 646
        19.5.4 The Burgers Equation with a Source Term ........ 648
   19.6 Other Solvers ......................................... 651
   19.7 Concluding Remarks .................................... 653
20 The ADER Approach .......................................... 655
   20.1 Introduction .......................................... 655
   20.2 The Finite Volume Method .............................. 657
        20.2.1 The Framework .................................. 657
        20.2.2 The Numerical Flux ............................. 658
        20.2.3 The Numerical Source ........................... 659
        20.2.4 Reconstruction ................................. 660
   20.3 Second-Order Scheme for a Model Equation .............. 663
        20.3.1 Numerical Flux and Numerical Source ............ 663
        20.3.2 The Scheme ..................................... 666
   20.4 Schemes of Arbitrary Accuracy ......................... 667
        20.4.1 The Numerical Flux ............................. 667
        20.4.2 The Numerical Source ........................... 668
        20.4.3 Summary ........................................ 668
   20.5 Sample Numerical Results .............................. 669
        20.5.1 Long-Time Advection of Smooth Profiles ......... 669
        20.5.2 Convergence Rates .............................. 672
   20.6 Concluding Remarks .................................... 673
21 Concluding Remarks ......................................... 679
   21.1 Summary of Numerical Aspects .......................... 679
   21.2 Potential Applications ................................ 681
   21.3 Current Research Topics ............................... 685
   21.4 The NUMERICA Library .................................. 686

References .................................................... 687
Index ......................................................... 719


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:44 2019. Размер: 31,685 bytes.
Посещение N 1757 c 11.06.2013