Preface ........................................................ ix
1 van der Waals Energies in the Formation and Interaction
of Nanoparticle Aggregates ................................ 1-27
William H. Marlow
1 Nanoparticle Aggregates for Nanotechnology ................ 1
1.1 Nanoparticles from Gas-Phase Processes ............... 2
1.2 Assembling Functional Nanostructures for Use of
Intrinsic Properties of Nanoparticles ................ 3
1.3 Potential Utilization of Agglomerates as
Elementary Units of Functional Nanostructues ......... 4
2 Physics of Interactions on the Nanoscale .................. 5
2.1 Basic van der Waals Energies for Point Atoms ......... 7
2.2 Coupling of Point-Atoms: van der Waals Interactions
in Discrete and Continuum Descriptions .............. 10
2.3 Everywhere-Finite van der Waals Interactions ........ 18
2.4 Condensed Matter Interactions at Short Range [26] ... 22
2.5 Recapitulation and Final Step ....................... 24
2 Effect of Thermoporesis on 10-NM-Diameter Nanoparticles in
Gas Flow inside a Tube ................................... 29-42
Fumio Naruse, Seiichiro Kashu and Chikara Hayashi
1 Experimental Configuration ............................... 29
2 Temperature Profile ...................................... 31
2.1 TheCase of TW = T0-ζz ............................... 31
2.2 The Case of a Constant TW ........................... 32
2.3 Requirement Outside the Tube Wall for Having
TW = To-ζz .......................................... 33
2.4 Gas Flow Entrance Zone of the Tube .................. 33
3 Nanoparticles in Poiseuille Gas flow in a Tube Having
an inside Temperature Profile TW = T0 + ZZ ............... 34
3.1 Flow Velocity ....................................... 34
3.2 Thermophoretic force, F2 ............................ 34
3.3 Terminal Velocity, UT ............................... 35
3.4 Total Travel Distance by Thermophoresis ............. 35
3.5 Brownian Diffusion .................................. 38
4 Experimental Results ..................................... 39
3 Key Effects in Nanoparticle Formation by Combustion
Techniques ............................................... 43-67
Igor S. Altman, Peter V. Pikhitsa and Mansoo Choi
1 Introduction ............................................. 43
2 Physical Process Fundamentals ............................ 45
3 Condensation Growth of Oxide Particles: Macro Approach ... 48
3.1 General Description ................................. 48
3.2 Heat Transfer Between a Nanoparticle and Its
Environment ......................................... 50
3.3 Qualitative Analysis ................................ 52
4 Condensation Growth of Oxide Particles: Micro Approach ... 57
4.1 Prerequisites for the Micro Approach ................ 57
4.2 General Ideas ....................................... 58
4.3 Emission Characteristics of Oxide Particles ......... 60
4.4 Defect Generation ................................... 62
5 Summary .................................................. 66
4 Basics of UV Laser-Assisted Generation of Nanoparticles
Chemical Vapour Deposition, and Comparison with UV Laser
Ablation ................................................ 69-122
Peter Heszler, Lars Landstrom and Claes-Göran Granqvist
1 Introduction ............................................. 69
1.1 Nanoparticles/Nanocrystals .......................... 69
1.2 Nanostructured Materials ............................ 71
1.3 Generation of Nanoparticles ......................... 71
1.4 Laser Assisted Generation of Gas Phase
Nanoparticles ....................................... 71
2 Model System: Tungsten Nanoparticle Formation by UV
Laser Assisted CVD ....................................... 73
2.1 Experimental ........................................ 73
2.2 Materials Analysis .................................. 75
2.3 Emission Spectroscopy of Hot Nanoparticles:
Analysis of Emitted Thermal Radiation ............... 78
2.4 Effect of Gas Constituents on the Size
Distribution, Deposition Rate, and Optical
Emission ............................................ 89
3 On the Chemistry of Particle Nucleation and Growth ....... 98
4 Carbon Coated Iron Nanoparticles by Laser Induced
Decomposition of Ferrocene (FE(C5H5)2) .................. 102
4.1 Experimental ....................................... 103
4.2 Materials Characterisation ......................... 103
4.3 Size Distributions ................................. 106
4.4 Emission Spectroscopy of Hot Particles ............. 107
5 Size Distribution of LCVD Generated Nanoparticles ....... 109
6 Tungsten Nanoparticle Formation by Laser Ablation ....... 112
6.1 Experimental ....................................... 112
6.2 Materials Analysis ................................. 114
7 Comparison of Nanoparticle Generation by LCVD and LA .... 117
8 Summary and Conclusions ................................. 118
5 Nanoparticle Formation by Combustion Techniques
Gas-Dispersed Synthesis of Refractory Oxides ........... 123-156
Andrey N. Zolotko, Nikolay I. Poletaev, Jacob I. Vovchuk
and Aleksandr V. Florko
1 Introduction ............................................ 124
2 Physical Prerequisites for the GDS Method ............... 125
3 Laboratory GDS Reactor .................................. 127
4 Stabilization of Two-phase LPF and LDF .................. 130
5 Mechanism for Combustion of Fuel Particles in a Dust
Cloud ................................................... 134
6 Influence of Macroparameters for the Reactor on the
Properties of GDS oxides ................................ 140
7 Control of Dispersion Properties for GDS Oxides ......... 144
8 Estimation of the Dispersion of Combustion Products ..... 147
9 Conclusion .............................................. 153
6 Electron Diffraction from Atomic Cluster Beams ......... 157-184
B.D. Hall, M. Hyslop, A. Wurl, and S.A. Brown
1 Introduction ............................................ 157
2 Electron Diffraction from Atomic Clusters ............... 159
2.1 Kinematic Diffraction .............................. 159
2.2 Typical Profiles ................................... 160
2.3 Relating Measurements to Structure ................. 162
3 Rare-gas Clusters—The Orsay Group ....................... 164
3.1 Early Results and Analysis ......................... 164
3.2 Icosahedral-to-FCC Transition ...................... 165
4 Early Metal Particle Studies ............................ 166
4.1 The Northwestern Source ............................ 166
4.2 Source Characteristics ............................. 168
4.3 Experiments on Metal Clusters ...................... 168
5 Further Studies of Metals ............................... 169
5.1 Unsupported Metal MTPs ............................. 169
5.2 Large Metastable Icosahedra ........................ 170
5.3 Structural Transitions in Copper ................... 171
6 Recent Studies .......................................... 172
6.1 Bismuth Clusters ................................... 172
6.2 Lead Clusters ...................................... 175
7 Alternative Electron Diffraction Techniques ............. 180
7.1 Diffraction from Trapped Clusters .................. 180
8 Conclusion .............................................. 181
7 Index ...................................................... 185
|