1 INTRODUCTION ................................................. 5
2 THEORETICAL PART ............................................. 7
2.1 Polyisobutylene: Industrial applications and
importance .............................................. 7
2.1.1 Different classes of industrial polyisobutylene:
Their applications and industrial manufacturing ......... 8
2.2 Polyisobutylene: Its properties and structures ......... 13
2.3 Isobutylene: Cationic polymerization ................... 14
2.3.1 Initiator systems: Their terminology and
definitions ..................................... 15
2.3.2 Conventional/uncontrolled versus living/
controlled cationic polymerization and the
spectrum of ionicities of active species ........ 16
2.3.3 Conventional cationic polymerization: Its
chemistry and mechanistic aspects ............... 18
2.3.4 Controlled and living cationic polymerization:
Its chemistry and mechanistic aspects ........... 21
2.4 Double bond terminated polyisobutylene: Its
advantages and approaches .............................. 25
2.4.1 Monofunctional or bifunctional exo terminated
PIB via controlled cationic polymerization
(multisteps) .................................... 25
2.4.2 End quenching of quasiliving polymerization ..... 26
2.4.3 Room temperature polymerization with alkyl zinc
chloride and alkyl halides ...................... 28
2.4.4 AlCl3 based initiator system with added
electron donors ................................. 29
2.4.5 FeCl3 based initiator system with added electron
donors .......................................... 30
2.4.6 Cationic polymerization using heteropolyacid
salt catalysts .................................. 31
2.5 Weakly Coordinating Anions (WCAs) ...................... 32
2.5.1 Definition and the properties of WCAs: The
candidates ...................................... 32
2.5.2 The applications of WCAs and their
implications .................................... 32
2.6 The application of the WCAs in isobutylene
polymerization ......................................... 33
2.6.1 Metallocene based and related complexes ......... 33
2.6.2 Non metallocene-based initiator ................. 36
2.7 Other related systems or developments in the
polymerization of isobutylene .......................... 38
2.8 Solvent Ligated Metal Complexes associated with WCA .... 39
2.8.1 Background: The developments and progress of
the application of the transition metal
complexes ....................................... 39
2.8.2 The complexes associated with the
perfluoroborate WCAs or [borate WCAs]: Their
applications In the polymerization of
isobutylene ..................................... 42
2.8.3 The complexes associated with the
perfluoroalkoxyaluminates WCA or [aluminate
WCAs] ........................................... 45
2.9 The immobilization of the complexes on support ......... 46
2.9.1 Immobilization via cation coordination .......... 46
2.9.2 Immobilization via anion coordination ........... 47
3 THE AIMS OF THE WORK ........................................ 48
4 RESULTS AND DISCUSSIONS ..................................... 51
4.1 Complexes and complexes intermediates used ............. 51
4.1.1 Perfluoroborate WCAs or [borate WCAs] based
complexes utilized .............................. 51
4.1.2 Perfluoroalkoxyaluminates WCAs or [aluminate
WCAs] complexes utilized ........................ 53
4.2 The screening of the complexes for the
homopolymerization of isobutylene at 30°C .............. 55
4.2.1 Perfluoroborate WCAs or [borate WCA] complexes
screened ........................................ 57
4.2.2 Perfluoroalkoxyaluminates WCAs or [aluminate
WCA] complex screened ........................... 68
4.3 The detailed study of the perfluoroalkoxyaluminates
WCAs [aluminate WCAs] for the polymerization of
isobutylene ............................................ 71
4.3.1 Effect of the concentration of the complexes .... 71
4.3.2 Time dependence investigation ................... 75
4.3.3 Effect of the solvent used ...................... 76
4.3.4 Effect of the monomer concentration (All
Monomer In - AMI) ............................... 79
4.3.5 Incremental monomer addition (IMA) .............. 80
4.3.6 Near neat isobutylene ........................... 81
4.3.7 Usage of proton trap (2,6-Di-tert-butyl-4-
methylpyridine) ................................. 81
4.3.8 Effect of the addition of additives ............. 82
4.3.9 The Online HNMR testing: Temperature
dependence ...................................... 96
4.3.10 Autoclave Polymerization ........................ 98
4.3.11 Summary of the work conducted with the
aluminate based WCAs and comparison with the
borate-WCAs analogues ........................... 98
4.4 Detailed study of the non-metal containing complexes
associated with WCAs [borate WCAs] for the
polymerization of isobutylene ......................... 102
4.4.1 Application of the acid complex in the
homopolymerization of isobutylene .............. 102
4.4.2 Application of the triphenylmethyl complex in
the homopolymerization of isobutylene .......... 108
4.4.3 Summary for the work with non-metal
containing complexes associated with WCAs
[borate WCAs] for the polymerization of
isobutylene .................................... 118
4.5 Polymerization mechanism examination and
determination ......................................... 119
4.5.1 The various mechanisms postulated .............. 119
4.5.2 The isomerization of the terminal end groups ... 124
4.5.3 The possible roles of the WCAs ................. 130
4.5.4 The possible role of protons ................... 142
4.5.5 The possible role of the metal complexes and
its ligands .................................... 156
4.5.6 Summary of the mechanistic work conducted and
the possible mechanism determined .............. 160
4.6 The immobilization of the metal ligated metal
complexes by using SAN as polymeric ligands ........... 169
4.6.1 The synthesis of the polymeric ligands - SAN
copolymer ...................................... 169
4.6.2 The proposed approaches and protocols for
grafting ....................................... 170
4.6.3 The interaction between the SAN copolymers
with [Mn(NCCH3)6] [B(C6H3(CF3)2)4]2, or
(SAN-MnAN2) via the readily synthesized metal
complexes route ................................ 173
4.6.4 The interaction between the SAN copolymers
with copper (II) complexes (SAN-Cu) ............ 176
4.6.5 The influence of SAN copolymer to the
polymerization system .......................... 179
4.6.6 The polymerization trial run with the grafted
SAN 002 ........................................ 180
4.6.7 Summary of the work conducted with
poly(styrene-co-acrylonitrile) or SAN
copolymers as polymeric ligands ................ 181
4.7 Calorimetric study of the polymerization of
isobutylene at elevated temperature ................... 184
4.7.1 The application of [H(OCH2CH3)2][B(C6F5)4] ..... 184
4.7.2 The application of [Cu(NCC6H5)6][B(C6F5)4]2 .... 187
4.7.3 Summary of the calorimetric studies of the
polymerization of isobutylene at elevated
temperature .................................... 189
5 SUMMARY .................................................... 190
6 EXPERIMENTAL PART .......................................... 198
6.1 Methods and materials ................................. 198
6.1.1 Polymerization methods for isobutylene
polymerization ................................. 198
6.1.2 Mechanistic studies via online NMR
spectroscopy ................................... 199
6.1.3 Synthesis of the poly(styrene-co-
acrylonitrile) or SAN copolymers ............... 200
6.2 Analytical methods and measurements ................... 201
6.2.1 Nuclear Magnetic Resonance (NMR)
spectroscopy ................................... 201
6.2.2 Gel Permeation Chromatography (GPC) ............ 201
6.2.3 Gas Chromatography (GC) ........................ 201
6.2.4 Infrared (IR) spectroscopy ..................... 201
6.2.5 Microelemental analysis ........................ 201
6.3 The list of the complexes tested for the
homopolymerization of isobutylene ..................... 202
6.3.1 The complexes associated with the
perfluoroborate and perfluoroalkoxyaluminates
WCAs ........................................... 202
6.3.2 The immobilized complexes ...................... 202
7 REFERENCE .................................................. 203
APPENDIX A: LISTS OF TABLES
APPENDIX B: LISTS OF FIGURES
APPENDIX C: LISTS OF ABBREVIATIONS
|