Mathematical epidemiology (Berlin, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMathematical epidemiology / ed. by F.Brauer, P. van den Driessche, J.Wu; with contributions by L.J.S.Allen et al. - Berlin: Springer, 2008. - xviii, 408 p.: ill. (some col.). - (Lecture Notes in Mathematics; 1945). - Incl. bibl. ref. - Ind.: p.403-408. - ISBN 978-3-540-78910-9; ISSN 0075-8434
 

Оглавление / Contents
 
Mathematical Epidemiology ....................................... 1
F. Brauer, P. van den Driessche and J. Wu, editors

Part I  Introduction and General Framework

1  A Light Introduction to Modelling Recurrent Epidemics ........ 3
   David J.D. Earn
   1.1  Introduction ............................................ 3
   1.2  Plague .................................................. 4
   1.3  Measles ................................................. 5
   1.4  The SIR Model ........................................... 6
   1.5  Solving the Basic SIR Equations ......................... 8
   1.6  SIR with Vital Dynamics ................................ 11
   1.7  Demographic Stochasticity .............................. 13
   1.8  Seasonal Forcing ....................................... 13
   1.9  Slow Changes in Susceptible Recruitment ................ 14
   1.10 Not the Whole Story .................................... 15
   1.11 Take Home Message ...................................... 16
   References .................................................. 16
2  Compartmental Models in Epidemiology ........................ 19
   Fred Brauer
   2.1  Introduction ........................................... 19
        2.1.1  Simple Epidemic Models .......................... 22
        2.1.2  The Kermack-McKendrick Model .................... 24
        2.1.3  Kermack-McKendrick Models with General
               Contact Rates ................................... 32
        2.1.4  Exposed Periods ................................. 36
        2.1.5  Treatment Models ................................ 38
        2.1.6  An Epidemic Management (Quarantine-Isolation)
               Model ........................................... 40
        2.1.7  Stochastic Models for Disease Outbreaks ......... 45
   2.2  Models with Demographic Effects ........................ 45
        2.2.1  The SIR Model ................................... 45
        2.2.2  The SIS Model ................................... 52
   2.3  Some Applications ...................................... 55
        2.3.1  Herd Immunity ................................... 55
        2.3.2  Age at Infection ................................ 56
        2.3.3  The Interepidemic Period ........................ 57
        2.3.4  "Epidemic" Approach to the Endemic
               Equilibrium ..................................... 59
        2.3.5  Disease as Population Control ................... 60
   2.4  Age of Infection Models ................................ 66
        2.4.1  The Basic SPR Model ............................. 66
        2.4.2  Equilibria ...................................... 69
        2.4.3  The Characteristic Equation ..................... 70
        2.4.4  The Endemic Equilibrium ......................... 72
        2.4.5  An STS Model .................................... 74
        2.4.6  An Age of Infection Epidemic Model .............. 76
   References .................................................. 78
3  An Introduction to Stochastic Epidemic Models ............... 81
   Linda J.S. Allen
   3.1  Introduction ........................................... 81
   3.2  Review of Deterministic SIS and SIR Epidemic Models .... 82
   3.3  Formulation of DTMC Epidemic Models .................... 85
        3.3.1  SIS Epidemic Model .............................. 85
        3.3.2  Numerical Example ............................... 90
        3.3.3  SIR Epidemic Model .............................. 90
        3.3.4  Numerical Example ............................... 93
   3.4  Formulation of CTMC Epidemic Models .................... 93
        3.4.1  SIS Epidemic Model .............................. 93
        3.4.2  Numerical Example ............................... 97
        3.4.3  SIR Epidemic Model .............................. 98
   3.5  Formulation of SDE Epidemic Models .................... 100
        3.5.1  SIS Epidemic Model ............................. 100
        3.5.2  Numerical Example .............................. 103
        3.5.3  SIR Epidemic Model ............................. 103
        3.5.4  Numerical Example .............................. 105
   3.6  Properties of Stochastic SIS and SIR Epidemic Models .. 105
        3.6.1  Probability of an Outbreak ..................... 105
        3.6.2  Quasistationary Probability Distribution ....... 108
        3.6.3  Final Size of an Epidemic ...................... 112
        3.6.4  Expected Duration of an Epidemic ............... 115
   3.7  Epidemic Models with Variable Population Size ......... 117
        3.7.1  Numerical Example .............................. 119
   3.8  Other Types of DTMC Epidemic Models ................... 121
        3.8.1  Chain Binomial Epidemic Models ................. 121
        3.8.2  Epidemic Branching Processes ................... 124
   3.9  MatLab Programs ....................................... 125
   References ................................................. 128

Part II Advanced Modeling and Heterogeneities

4  An Introduction to Networks in Epidemic Modeling ........... 133
   Fred Brauer
   4.1  Introduction .......................................... 133
   4.2  The Probability of a Disease Outbreak ................. 134
   4.3  Transmissibility ...................................... 138
   4.4  The Distribution of Disease Outbreak and Epidemic
        Sizes ................................................. 140
   4.5  Some Examples of Contact Networks ..................... 142
   4.6  Conclusions ........................................... 145
   References ................................................. 145
5  Deterministic Compartmental Models: Extensions of Basic
   Models ..................................................... 147
   P. van den Driessche
   5.1  Introduction .......................................... 147
   5.2  Vertical Transmission ................................. 148
        5.2.1  Kermack-McKendrick SIR Model ................... 148
        5.2.2  SEIR Model ..................................... 150
   5.3  Immigration of Infectives ............................. 152
   5.4  General Temporary Immunity ............................ 154
   References ................................................. 157
6  Further Notes on the Basic Reproduction Number ............. 159
   P. van den Driessche and James Watmough
   6.1  Introduction .......................................... 159
   6.2  Compartmental Disease Transmission Models ............. 160
   6.3  The Basic Reproduction Number ......................... 162
   6.4  Examples .............................................. 163
        6.4.1  The SEIR Model ................................. 163
        6.4.2  A Variation on the Basic SEIR Model ............ 165
        6.4.3  A Simple Treatment Model ....................... 166
        6.4.4  A Vaccination Model ............................ 168
        6.4.5  A Vector-Host Model ............................ 170
        6.4.6  A Model with Two Strains ....................... 171
   6.5  TZ0 and the Local Stability of the Disease-Free
        Equilibrium ........................................... 173
   6.6  1Z0 and Global Stability of the Disease-Free
        Equilibrium ........................................... 175
   References ................................................. 177
7  Spatial Structure: Patch Models ............................ 179
   P. van den Driessche
   7.1  Introduction .......................................... 179
   7.2  Spatial Heterogeneity ................................. 180
   7.3  Geographic Spread ..................................... 182
   7.4  Effect of Quarantine on Spread of 1918-1919
        Influenza in Central Canada ........................... 185
   7.5  Tuberculosis in Possums ............................... 188
   7.6  Concluding Remarks .................................... 188
   References ................................................. 189
8  Spatial Structure: Partial Differential Equations Models ... 191
   Jianhong Wu
   8.1  Introduction .......................................... 191
   8.2  Model Derivation ...................................... 192
   8.3  Case Study I: Spatial Spread of Rabies in
        Continental Europe .................................... 194
   8.4  Case Study II: Spread Rates of West Nile Virus ........ 199
   8.5  Remarks ............................................... 202
   References ................................................. 202
9  Continuous-Time Age-Structured Models in Population
   Dynamics and Epidemiology .................................. 205
   Jia Li and Fred Brauer
   9.1  Why Age-Structured Models? ............................ 205
   9.2  Modeling Populations with Age Structure ............... 206
        9.2.1  Solutions along Characteristic Lines ........... 208
        9.2.2  Equilibria and the Characteristic Equation ..... 209
   9.3  Age-Structured Integral Equations Models .............. 211
        9.3.1  The Renewal Equation ........................... 212
   9.4  Age-Structured Epidemic Models ........................ 214
   9.5  A Simple Age-Structured AIDS Model .................... 215
        9.5.1  The Reproduction Number ........................ 216
        9.5.2  Pair-Formation in Age-Structured Epidemic
               Models ......................................... 218
        9.5.3  The Semigroup Method ........................... 220
   9.6  Modeling with Discrete Age Groups ..................... 222
        9.6.1  Examples ....................................... 223
   References ................................................. 225
10 Distribution Theory, Stochastic Processes and Infectious
   Disease Modelling .......................................... 229
   Ping Yan
   10.1 Introduction .......................................... 230
   10.2 A Review of Some Probability Theory and Stochastic
        Processes ............................................. 231
        10.2.1 Non-negative Random Variables a,nri Their
               Distributions .................................. 231
        10.2.2 Some Important Discrete Random Variables
               Representing Count Numbers ..................... 234
        10.2.3 Continuous Random Variables Representing
               Time-to-Event Durations ........................ 237
        10.2.4 Mixture of Distributions ....................... 239
        10.2.5 Stochastic Processes ........................... 241
        10.2.6 Random Graph and Random Graph Process .......... 248
   10.3 Formulating the Infectious Contact Process ............ 249
        10.3.1 The Expressions for R0 and the Distribution
               of N such that R0 = E[N] ....................... 251
        10.3.2 Competing Risks, Independence and Homogeneity
               in the Transmission of Infectious Diseases ..... 254
   10.4 Some Models Under Stationary Increment Infectious
        Contact Process {K(x)} ................................ 255
        10.4.1 Classification of some Epidemics Where N
               Arises from the Mixed Poisson Processes ........ 255
        10.4.2 Tail Properties for N .......................... 258
   10.5 The Invasion and Growth During the Initial Phase of
        an Outbreak ........................................... 261
        10.5.1 Invasion and the Epidemic Threshold ............ 262
        10.5.2 The Risk of a Large Outbreak and Quantities
               Associated with a Small Outbreak ............... 263
        10.5.3 Behaviour of a Large Outbreak in its Initial
               Phase: The Intrinsic Growth .................... 273
        10.5.4 Summary for the Initial Phase of an Outbreak ... 280
   10.6 Beyond the Initial Phase: The Final Size of Large
        Outbreaks ............................................. 281
        10.6.1 Generality of the Mean Final Size .............. 282
        10.6.2 Some Cautionary Remarks ........................ 283
   10.7 When the Infectious Contact Process may not Have
        Stationary Increment .................................. 285
        10.7.1 The Linear Pure Birth Processes and the Yule
               Process ........................................ 286
        10.7.2 Parallels to the Preferential Attachment
               Model in Random Graph Theory ................... 288
        10.7.3 Distributions for N when {K(x)} Arises as a
               Linear Pure Birth Process ...................... 288
   References ................................................. 291

Part III Case Studies

11 The Role of Mathematical Models in Explaining
   Recurrent Outbreaks of Infectious Childhood Diseases ....... 297
   Chris T. Bauch
   11.1 Introduction .......................................... 297
   11.2 The SIR Model with Demographics ....................... 300
   11.3 Historical Development of Compartmental Models ........ 302
        11.3.1 Early Models ................................... 302
        11.3.2 Stochasticity .................................. 306
        11.3.3 Seasonality .................................... 306
        11.3.4 Age Structure .................................. 307
        11.3.5 Alternative Assumptions About Incidence
               Terms .......................................... 307
        11.3.6 Distribution of Latent and Infectious Period ... 308
        11.3.7 Seasonality Versus Nonseasonality .............. 308
        11.3.8 Chaos .......................................... 309
        11.3.9 Transitions Between Outbreak Patterns .......... 310
   11.4 Spectral Analysis of Incidence Time Series ............ 310
        11.4.1 Power Spectra .................................. 311
        11.4.2 Wavelet Power Spectra .......................... 313
   11.5 Conclusions ........................................... 314
   References ................................................. 316
12 Modeling Influenza: Pandemics and Seasonal Epidemics ....... 321
   Fred Brauer
   12.1 Introduction .......................................... 321
   12.2 A Basic Influenza Model ............................... 322
   12.3 Vaccination ........................................... 326
   12.4 Antiviral Treatment ................................... 330
   12.5 A More Detailed Model ................................. 334
   12.6 A Model with Heterogeneous Mixing ..................... 336
   12.7 A Numerical Example ................................... 341
   12.8 Extensions and Other Types of Models .................. 345
   References ................................................. 346
13 Mathematical Models of Influenza: The Role of Cross-
   Immunity, Quarantine and Age-Structure ..................... 349
   M. Nuño, C. Castillo-Chavez, Z. Feng and M. Martcheva
   13.1 Introduction .......................................... 349
   13.2 Basic Model ........................................... 351
   13.3 Cross-Immunity and Quarantine ......................... 354
   13.4 Age-Structure ......................................... 359
   13.5 Discussion and Future Work ............................ 362
   References ................................................. 363
14 A Comparative Analysis of Models for West Nile Virus ....... 365
   M.J. Wonham and M.A. Lewis
   14.1 Introduction: Epidemiological Modeling ................ 365
   14.2 Case Study: West Nile Virus ........................... 367
   14.3 Minimalist Model ...................................... 368
        14.3.1 The Question ................................... 368
        14.3.2 Model Scope and Scale .......................... 368
        14.3.3 Model Formulation .............................. 370
        14.3.4 Model Analysis ................................. 372
        14.3.5 Model Application .............................. 373
   14.4 Biological Assumptions 1: When does the Disease-
        Transmission Term Matter? ............................. 374
        14.4.1 Frequency Dependence ........................... 374
        14.4.2 Mass Action .................................... 374
        14.4.3 Numerical Values of 1Z0 ........................ 377
   14.5 Biological Assumptions 2: When do Added Model
        Classes Matter? ....................................... 377
   14.6 Model Parameterization, Validation, and Comparison .... 380
   14.7 Model Application #1: WN Control ...................... 381
   14.8 Model Application #2: Seasonal Mosquito Population .... 382
   14.9 Summary ............................................... 384
   References ................................................. 386
Suggested Exercises and Projects .............................. 391
1  Cholera .................................................... 395
2  Ebola ...................................................... 395
3  Gonorrhea .................................................. 395
4  HIV/AIDS ................................................... 396
5  HIV in Cuba ................................................ 396
6  Human Papalonoma Virus ..................................... 397
7  Influenza .................................................. 397
8  Malaria .................................................... 397
9  Measles .................................................... 398
10 Poliomyelitis (Polio) ...................................... 398
11 Severe Acute Respiratory Syndrome (SARS) ................... 399
12 Smallpox ................................................... 399
13 Tuberculosis ............................................... 400
14 West Nile Virus ............................................ 400
15 Yellow Fever in Senegal 2002 ............................... 400

Index ......................................................... 403


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:40 2019. Размер: 22,019 bytes.
Посещение N 2028 c 30.04.2013