1 Standard GMM ................................................. 9
1.1 Description of the game method for modelling from
crisp point of view ..................................... 9
1.2 An example: application of GMM in astronomy ............ 16
1.3 An example: GMM and Fibonacci type of sequences ........ 19
1.4 GMM, Turing machine and Cellular automaton ............. 25
1.5 GMM and neural networks ................................ 27
1.6 GMM and ACO algorithms ................................. 34
2 GMM with intuitionistic fuzzy estimations ................... 39
2.1 Short remarks on intuitionistic fuzzy sets and logic ... 39
2.2 Intuitionistic fuzzy interpretations of Conway's Game
of Life ................................................ 42
2.2.1 Six criteria of existence of an asterisk ........ 43
2.2.2 Four criteria for the "birth" of an asterisk .... 44
2.2.3 Four criteria for the "death" of an asterisk .... 44
2.2.4 Intuitionistic fuzzy rules for changing the
game-field ...................................... 45
2.3 Intuitionistic fuzzy interpretations of GMM ............ 48
2.3.1 Six criteria of existence of an object .......... 48
2.3.2 Intuitionistic fuzzy rules for changing of the
GMM-field ....................................... 49
2.3.3 Transformations of the game-field by modal
and extended modal operators .................... 52
2.3.4 Intuitionistic fuzzy rules for interaction ...... 56
2.3.5 Intuitionistic fuzzy criteria for proximity of
GMM-configurations .............................. 56
3 Applications of GMM ......................................... 59
3.1 Application of GMM for simulating some aspects of
forest dynamics ........................................ 59
3.2 Application of GMM for simulating of development of
forest fire ............................................ 74
3.3 Application of GMM for simulating oil transformation
in the marine environment .............................. 80
3.4 Application of the GMM for constructing of Voronoi's
dia-grams .............................................. 92
3.5 GMM and Brownian-like motions .......................... 98
3.6 GMM for solving variants of the Steiner-Rosenbaum's
problem ............................................... l07
Conclusion .................................................... 111
Bibliography .................................................. 113
Index ......................................................... 119
|